Atomic layer etching in HBr/He/Ar/O2 plasmas

Author:

Hao Qinzhen1ORCID,Elgarhy Mahmoud A. I.12ORCID,Kim Pilbum3ORCID,Nam Sang Ki3ORCID,Kang Song-Yun3ORCID,Donnelly Vincent M.1ORCID

Affiliation:

1. William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston 1 , Houston, Texas 77204

2. Physics Department, Faculty of Science, Al-Azhar University 2 , Cairo 11651, Egypt

3. Mechatronics Research, Samsung Electronics Co., Ltd. 3 , Hwaseong-si, Gyeonggi-do 18448, South Korea

Abstract

Atomic layer etching of Si is reported in a radio frequency (RF) pulsed-power inductively coupled (ICP) plasma, with periodic injections of HBr into a continuous He/Ar carrier gas flow, sometimes with trace added O2. Several pulsing schemes were investigated, with HBr injection simultaneous with or alternating with ICP power. The product removal step was induced by applying RF power to the substrate, in sync with ICP power. Etching and dosing were monitored with optical emission spectroscopy. Little or no chemically enhanced ion-assisted etching was observed unless there was some overlap between HBr in the chamber and ICP power. This indicates that HBr dissociative chemisorption deposits much less Br on Si, compared with that from Br created by dissociation of HBr in the ICP. Chemically assisted etching rates nearly saturate at 2.0 nm/cycle as a function of increasing HBr-containing ICP dose at −75 VDC substrate self-bias. The coupled effects of O2 addition and substrate self-bias DC voltage on the etching rate were also explored. Etching slowed or stopped with increasing O2 addition. As bias power was increased, more O2 could be added before etching stopped.

Funder

Samsung

Publisher

American Vacuum Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3