Sputtering rate of micromilling on water ice with focused ion beam in a cryogenic environment

Author:

Fu Jing1,Joshi Sanjay B.1,Catchmark Jeffrey M.2

Affiliation:

1. The Pennsylvania State University Department of Industrial and Manufacturing Engineering, 310 Leonhard Building, , University Park, Pennsylvania 16802

2. The Pennsylvania State University Department of Agricultural and Biological Engineering, 109 Agricultural Engineering Building, , University Park, Pennsylvania 16802

Abstract

The use of focused ion beam (FIB) milling in a cryogenic environment provides an alternative to cryomicrotome for creating submicron sections of frozen hydrated samples. Although FIB milling has been widely implemented to sculpt inorganic sample sections for analysis such as transmission electron microscopy, the application of this technique to frozen biological samples has scarcely begun. The interactions of gallium ions used in FIB with water ice as the target are still not well understood, impeding the development of this technique for routine biological analysis. In this research, amorphous water ice samples are prepared by both vapor deposition and plunge freezing, and the sputtering yield is studied based on a number of process parameters, including ion energy, temperature, and ion current. Results show that sputtering of water ice by gallium ions is a compound process of nuclear sputtering and electronic sputtering. Analytical models, originally limited to astrophysics, are adopted in this study to predict the sputtering yield of water ice by FIB. The parameters for gallium ions at keV range are estimated and validated based on the experimental data. Temperature dependence of sputtering yield is also observed in the range between 83 and 123K, in which significant increase of sputtering yield occurs when the temperature approaches 123K. Sputtering yield is not significantly affected by variation of the ion current as shown by the data. Based on these results, the process parameters involved can be characterized, and feasible settings can be developed to facilitate reproducibility and ultimately the widespread implementation of FIB to biological sample preparation.

Publisher

American Vacuum Society

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3