Composition dependence of intrinsic surface states and Fermi-level pinning at ternary AlxGa1−xN m-plane surfaces

Author:

Freter Lars1ORCID,Lymperakis Liverios23ORCID,Schnedler Michael1ORCID,Eisele Holger4ORCID,Jin Lei1ORCID,Liu Jianxun5ORCID,Sun Qian5ORCID,Dunin-Borkowski Rafal E.1ORCID,Ebert Philipp1ORCID

Affiliation:

1. Ernst Ruska-Centrum (ER-C 1) and Peter Grünberg Institut (PGI 5), Forschungszentrum Jülich GmbH 1 , Jülich 52425, Germany

2. Department of Physics, University of Crete 2 , Heraklion 70013, Greece

3. Computational Materials Design Department, Max-Planck Institut für Eisenforschung GmbH 3 , Düsseldorf 40237, Germany

4. Institut für Physik, Otto-von-Guericke-Universität Magdeburg 4 , Universitätsplatz 2, Magdeburg 39106, Germany

5. Key Laboratory of Nano-devices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS) 5 , Suzhou 215123, China

Abstract

Growth on nonpolar group III-nitride semiconductor surfaces has been suggested to be a remedy for avoiding detrimental polarization effects. However, the presence of intrinsic surface states within the fundamental bandgap at nonpolar surfaces leads to a Fermi-level pinning during growth, affecting the incorporation of dopants and impurities. This is further complicated by the use of ternary, e.g., AlxGa1−xN layers in device structures. In order to quantify the Fermi-level pinning on ternary group III nitride nonpolar growth surface, the energy position of the group III-derived empty dangling bond surface state at nonpolar AlxGa1−xN(101¯0) surfaces is determined as a function of the Al concentration using cross-sectional scanning tunneling microscopy and spectroscopy. The measurements show that the minimum energy of the empty dangling bond state shifts linearly toward midgap for increasing Al concentration with a slope of ≈5 meV/%. These experimental findings are supported by complementary density functional theory calculations.

Funder

Deutsche Forschungsgemeinschaft

Publisher

American Vacuum Society

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3