Detecting intermediate-mass black hole binaries with atom interferometer observatories: Using the resonant mode for the merger phase

Author:

Torres-Orjuela Alejandro1ORCID

Affiliation:

1. MOE Key Laboratory of TianQin Mission, TianQin Research Center for Gravitational Physics & School of Physics and Astronomy, Frontiers Science Center for TianQin, Gravitational Wave Research Center of CNSA, Sun Yat-Sen University (Zhuhai Campus) , Zhuhai 519082, China

Abstract

Atom interferometry detectors like AION, ZAIGA, and AEDGE will be able to detect gravitational waves (GWs) at dHz covering the band between large space-based laser interferometers LISA/TianQin/Taiji and ground-based facilities LIGO/Virgo/KAGRA. They will detect the late inspiral and merger of GW sources containing intermediate-mass black holes (IMBHs) in the mass range 102−105 M⊙. We study how accurately the parameters of an IMBH binary can be measured using AION's power spectral density. Furthermore, we propose a detection scheme where the early inspiral of the binary is detected using the regular broadband mode while the merger is detected using the resonant mode. We find that using such a detection scheme, the signal-to-noise ratio of the detection and the detection accuracy of the parameters can be enhanced compared to the full detection of the signal using the broadband mode. We, further, assess the impact of the necessary detection gap while switching from broadband to resonant mode studying the case of a short (30  s) and a long (600  s) gap. We find that the improvement in the detection accuracy for both gaps is around 40% for the total mass and the spin of the heavier black hole. For the short gap, the accuracy always improves ranging between 2% and 31% for the other parameters. For the long gap, there is a decrease in the detection accuracy for the luminosity distance, the inclination, and the initial phase but only by 1%–6% while for the remaining parameters, we have improved accuracies of around 2%–20%.

Funder

Guangdong Major Project of Basic and Applied Basic Research

China Postdoctoral Science Foundation

Publisher

American Vacuum Society

Subject

Electrical and Electronic Engineering,Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Networks and Communications,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Reference122 articles.

1. GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs

2. GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run

3. LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration, “ GWTC-3: Compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run,” arXiv:2111.03606 (2021).

4. Advanced LIGO

5. Virgo: a laser interferometer to detect gravitational waves

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3