Effect of varying threading dislocation densities on the optical properties of InGaN/GaN quantum wells with intentionally created V-shaped pits

Author:

Zhang Kaitian1ORCID,Hu Chenxi2ORCID,Thirupakuzi Vangipuram Vijay Gopal1ORCID,Meng Lingyu1ORCID,Chae Christopher3,Zhu Menglin3,Hwang Jinwoo3ORCID,Kash Kathleen2ORCID,Zhao Hongping13ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, The Ohio State University 1 , Columbus, Ohio 43210

2. Department of Physics, Case Western Reserve University 2 , Cleveland, Ohio 44106

3. Department of Materials Science and Engineering, The Ohio State University 3 , Columbus, Ohio 43210

Abstract

The effect of varying threading dislocation densities on the internal quantum efficiencies (IQEs) of InGaN quantum wells (QWs), with and without intentionally created “V-pits,” is reported here. InGaN QW samples grown on GaN-on-sapphire templates with threading dislocation densities of <1 × 108 and <1 × 109 cm−2 are compared, with and without GaN/InGaN superlattice (SL) layers incorporated to intentionally open up the threading dislocation cores and form large-size “V-pits.” The formation of “V-pits” is confirmed by cross-sectional transmission electron microscopy to initiate from threading dislocations in the SL layers. The densities of the pits are confirmed by plan-view SEM to agree with the substrate threading dislocation densities. The experimental room temperature IQEs of the “V-pit” QW samples are enhanced to 15% ± 1% compared to 6% ± 2% for conventional QW samples. Both conventional and “V-pit” samples show insensitivity to the magnitude of the dislocation densities with respect to IQE performance, while the “V-pit” samples show shifts in the peak emission wavelengths compared to the conventional samples, attributed to strain modulation. This study provides additional understanding of the causes of the observed insensitivity of the IQEs to different threading dislocation densities.

Funder

US Department of Energy

Publisher

American Vacuum Society

Subject

Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3