Gas-phase etching mechanism of silicon oxide by a mixture of hydrogen fluoride and ammonium fluoride: A density functional theory study

Author:

Hidayat Romel1ORCID,Khumaini Khabib12ORCID,Kim Hye-Lee13ORCID,Chowdhury Tanzia1ORCID,Mayangsari Tirta Rona2ORCID,Cho Seongjae4ORCID,Cho Byungchul5ORCID,Park Sangjoon5ORCID,Jung Jongwan1ORCID,Lee Won-Jun13ORCID

Affiliation:

1. Department of Nanotechnology and Advanced Materials Engineering, Sejong University 1 , Seoul 05006, Republic of Korea

2. Department of Chemistry, Universitas Pertamina 2 , Jakarta 12220, Indonesia

3. Metal-organic Compounds Materials Research Center, Sejong University 3 , Seoul 05006, Republic of Korea

4. Department of Electronics Engineering and the Graduate School of IT Convergence Engineering, Gachon University 4 , Seongnam 13120, Republic of Korea

5. Wonik IPS 5 , Pyeongtaek 17709, Republic of Korea

Abstract

We report the selective etching mechanism of silicon oxide using a mixture of hydrogen fluoride (HF) and NH4F gases. A damage-free selective removal of native oxide has been used in semiconductor manufacturing by forming and removing the ammonium fluorosilicate [(NH4)2SiF6] salt layer. A downstream plasma of NF3/NH3 or a gas-phase mixture of HF and NH4F was used to form (NH4)2SiF6. We modeled and simulated the fluorination of silicon oxide and the salt formation by density functional theory calculation. First, we simulated the successive fluorination of silicon oxide using SiO2 slab models. The fluorination reactions of SiO2 surfaces by the mixture produced a volatile SiF4 molecule or a surface anion of –OSiF4−* with an NH4+ cation with low activation energies. Unlike HF, NH4F produced surface salt species consisting of a surface anion and an ammonium cation. Next, we simulated the (NH4)2SiF6 formation from the two reaction products on fluorinated SiO2 surfaces. (NH4)2SiF6 can be formed exothermally with low activation energies (0.27 or 0.30 eV). Finally, we compared silicon with SiO2 to demonstrate the inherently selective etching of silicon oxide. The fluorination reactions of silicon by the mixture showed the activation energies significantly higher than the SiO2 cases, 1.22–1.56 eV by HF and 1.94–2.46 eV by NH4F due to the less stable transition state geometries. Therefore, the selective salt formation on silicon oxide, not on silicon, is expected in near-room temperature processing, which enables selective etching of silicon oxide.

Funder

Ministry of Trade, Industry and Energy

Korea Semiconductor Research Consortium

Ministry of Education

Publisher

American Vacuum Society

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3