A Time Series Modeling and Prediction of Wireless Network Traffic

Author:

Gowrishankar S.,Satyanarayana P. S.

Abstract

The number of users and their network utilization will enumerate the traffic of the network. The accurate and timely estimation of network traffic is increasingly becoming important in achieving guaranteed Quality of Service (QoS) in a wireless network. The better QoS can be maintained in the network by admission control, inter or intra network handovers by knowing the network traffic in advance. Here wireless network traffic is modeled as a nonlinear and nonstationary time series. In this framework, network traffic is predicted using neural network and statistical methods. The results of both the methods are compared on different time scales or time granularity. The Neural Network(NN) architectures used in this study are Recurrent Radial Basis Function Network (RRBFN) and Echo state network (ESN).The statistical model used here in this work is Fractional Auto Regressive Integrated Moving Average (FARIMA) model. The traffic prediction accuracy of neural network and statistical models are in the range of 96.4% to 98.3% and 78.5% to 80.2% respectively.

Publisher

International Association of Online Engineering (IAOE)

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Network Traffic Monitoring and Analysis;Machine Learning For Network Traffic and Video Quality Analysis;2024

2. TLS-Net: A Hybrid Time Series Prediction Model Combining TCN and LSTM for Ship-Satellite Network Traffic;2023 7th International Conference on Transportation Information and Safety (ICTIS);2023-08-04

3. Metaheuristic Optimization of Time Series Models for Predicting Networks燭raffic;Computers, Materials & Continua;2023

4. Performance analysis of a cloud-based network analytics system with multiple-source data aggregation;International Journal of Pervasive Computing and Communications;2022-09-26

5. A mobile traffic load prediction based on recurrent neural network: A case of telecommunication in Afghanistan;Electronics Letters;2022-05-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3