Arrhythmia Detection Based on New Multi-Model Technique for ECG Inter-Patient Classification

Author:

Oleiwi Zahraa Ch.ORCID,AlShemmary Ebtesam N.ORCID,Al-Augby SalamORCID

Abstract

This paper presents a novel model for arrhythmia detection based on a cascading technique that utilizes a combination of the One-Sided Selection (OSS) method, Support Vector Machine (SVM), and K-Nearest Neighbor (KNN) algorithms, this model denoted by (OWSK) model to classify four types of electrocardiogram (ECG) heartbeats following inter-patient scheme. The OWSK model consists of three stages. The first stage involves resampling using the One-Sided Selection (OSS) method to solve the imbalance problem and reduce data by removing noisy, borderline, and redundant samples. The second stage involves using Wavelet Transformation (WT) and Power Spectral Density (PSD) to extract the most relevant frequency domain features. The third stage involves a cascading process by constructing the classifier from SVM trained on the whole dataset to classify normal and abnormal beats. Then, KNN (K-Nearest Neighbors) is trained on only the three irregular minority classes to classify the three types of arrhythmias for the detection of ventricular ectopic beats, supraventricular ectopic beats, and fusion beats (V, S, and F). The performance of the proposed model is evaluated in terms of different metrics, including accuracy, recall, precision, and F1 score. The results show the superiority of the proposed model in medical diagnosis compared to the latest works, where it achieves 90%, 90%, 93%, and 91% for accuracy, recall, precision, and F1 score under the inter-patient paradigm and 98%, 98%, 98%, and 98% under the intra-patient paradigm.

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering,Biomedical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detection and Classification of Arrhythmia Using Hybrid Deep Learning Model;2023 International Conference on Next Generation Electronics (NEleX);2023-12-14

2. Diagnosis and Classification of Cardiac Arrhythmias Using Convolutional Neural Networks;2023 International Conference on Electrical, Computer and Energy Technologies (ICECET);2023-11-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3