A Survey of Attention Deficit Hyperactivity Disorder Identification Using Psychophysiological Data

Author:

De Silva SenuriORCID,Dayarathna SanuwaniORCID,Ariyarathne GanganiORCID,Meedeniya DulaniORCID,Jayarathna SampathORCID

Abstract

Attention Deficit Hyperactivity Disorder (ADHD) is one of the most common neurological disorders among children, that affects different areas in the brain that allows executing certain functionalities. This may lead to a variety of impairments such as difficulties in paying attention or focusing, controlling impulsive behaviors and overreacting. The continuous symptoms may have a severe impact in the long-term. This paper discusses the existing literature on the identification of ADHD using eye movement data and fMRI together including different deep learning techniques, existing models and a thorough analysis of the existing literature. We have identified the current challenges and possible future directions to provide computational support for early identification of ADHD patients that enable early treatments.

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3