Probing the physicochemical impact of musk melon seed oil on mayonnaise

Author:

Nishat Zahra,Yousaf Quddoos Muhammad,Shahzadi Neelum,Ameer Kashif,Mohamed Ahmed Isam A.,Yaqub Shazia,Mukhtar Shanza,Mahmood Shahid,Rafique Ayesha,Siddique Raza Muhammad,Shahzad Aymen,Umar Hayat Bushra,O. Aljobair Moneera

Abstract

Owing to high consumption and industrial preparation of musk melon products, most of its byproducts are wasted without effective utilization. Musk melon agro-based waste material (seeds and peels) is an excellent source of antioxidants and phytochemicals. The purpose of this study was to improve the oxidative stability of mayonnaise by addition of musk melon seed oil. The study was conducted to check the physicochemical effect of musk melon seed oil in mayonnaise. Proximate analysis of seeds (i.e. moisture, crude fat, crude fiber, crude protein, ash, and carbohydrate content) was performed. Oil was extracted by using the cold press extraction method, and this oil was tested for different physicochemical analyses (i.e., saponification value, iodine number, specific gravity, 2,2-diphenyl-1-picrylhydrazyl [DPPH] value, viscosity, free fatty acid, and color). Physicochemical analysis was done during the storage period of 0, 20, 40, and 60 days, prior to performing sensory evaluation of mayonnaise. Data obtained from this analysis were further analyzed using statistical tools. A decreasing trend was observed for DPPH and peroxide values of mayonnaise with progression of days, thus showing that addition of musk melon seed oil decreased the production of free radicals. Hence, adding 40% musk melon seed oil showed the best result for overcoming the oxidation of mayonnaise and minimizing the production of free radicals. The data obtained from the statistical analysis indicated that the aroma and texture values of treatment T5 were maximum, and the color and flavor of treatments T4 and T5 were high. The overall acceptability of treatment T5 was high in which 40% of musk melon seed oil was used to combat the production of free radicals. In brief, waste material could be used for producing different types of products in the industry, rather than discarding the same, as it lessened the cost and provide a good quantity of nutrients.

Publisher

Codon Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3