CRYAB reduces cigarette smoke-induced inflammation, apoptosis, and oxidative stress by retarding PI3K/Akt and NF-κB signaling pathways in human bronchial epithelial cells

Author:

Xie Shiliang,Wang Xiaofeng

Abstract

Background: Chronic obstructive pulmonary disease (COPD) is a familiar airway disease characterized by chronic immune response in the lungs. More and more evidences have assured that cigarette smoking is the primary reason for the progression of COPD, but its related regulatory mechanism requires further clarification. The α-B-crystallin (CRYAB) has been identified to exhibit vital functions in different diseases, and is down-regulated in the alveoli of mice mediated by cigarette smoke extract (CSE). Methods: The messenger RNA expression of CRYAB was assessed by reverse transcription--quantitative polymerase chain reaction. The proteins’ expressions were tested using Western blot method. The cytotoxicity was measured by lactate dehydrogenase assay. The levels of malondialdehyde, superoxide dismutase, catalase, myeloperoxidase, tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 were assessed through enzyme-linked-immunosorbent serologic assay (ELISA). Results: In this study, it was discovered that the expression of CRYAB was markedly decreased with the increased time of cigarette smoking. Moreover, CRYAB overexpression increased cell viability and decreased cell apoptosis induced by cigarette smoke. In addition, the strengthened oxidative stress and inflammation mediated by CSE treatment was relieved after overexpression of CRYAB. Eventually, results OF Western blot method confirmed that CRYAB retarded the activation of phosphatidylinositol 3-kinase–Ak strain transforming (PI3K–Akt) and nuclear factor kappa B (NF-κB) signaling pathways. Conclusion: Our results manifested that CRYAB reduced cigarette smoke-induced inflammation, apoptosis, and oxidative stress in normal and diseased bronchial epithelial (NHBE) and human bronchial epithelial (BEAS-2B) cells by suppressing PI3K/Akt and NF-κB signaling pathways, which highlighted the functioning of CRYAB in preventing or treating COPD.

Publisher

Codon Publications

Subject

General Medicine,Immunology and Allergy,Immunology,Pulmonary and Respiratory Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3