Alluaudite-Group Phosphate and Arsenate Minerals

Author:

Tait Kimberly T.1,Hawthorne Frank C.1,Halden Norman M.1

Affiliation:

1. Department of Geological Sciences, 125 Dysart Road, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada

Abstract

ABSTRACT A systematic study of alluaudite, hagendorfite, and varulite was done using single-crystal X-ray diffraction, powder diffraction, and electron probe microanalysis of samples from 12 separate localities. The crystal structures of the representative alluaudite and hagendorfite samples were refined to R1 indices of 3.7 and 1.8%, respectively, using a Siemens P4 automated four-circle diffractometer equipped with a graphite monochromator and MoKα X-radiation. These samples and several others were analyzed with an electron microprobe to study variations in chemical composition. For the single-crystal analyses, the resulting unit formulae are (Na0.11□0.89)(Na0.59Mn0.27Ca0.14)Mn1.00(Fe3+1.64Al0.24Mg0.13)(PO4)3 for alluaudite, (Na0.79□0.21)(Na0.81Mn2+0.19)(Mn0.70Fe2+0.30)(Fe2+1.72Mg0.27Al0.01)(PO4)3 for hagendorfite, and (Na0.84□0.16)(Na0.71Ca0.23□0.06)Mn1.00(Fe3+0.89Fe2+0.68Mn0.42Mg0.01)(PO4)3 for varulite. Originally, a nomenclature scheme was proposed for the alluaudite-group minerals that was based on sequentially distributing the cations in the cell according to increasing polyhedron size, matching that size with increasing ionic radii of the cations. For alluaudite, the structural formula was written as X(2)4X(1)4M(1)4M(2)8(PO4)12, with the sites ordered in decreasing size of the discrete polyhedra. Later, the formula [A(2)A(2)'A(2)”2][A(1)A(1)'A(1)”2]M(1)M(2)2(PO4)3 was proposed, which takes into account the distinct crystallographic sites in the channels of the structure. More recently there has been a revision to the nomenclature of the group. The simplified structural formula for the alluaudite-type is now A(2)'A(1)M(1)M(2)2(TO4)3; the new nomenclature scheme has been adopted by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (IMA-CNMNC), based on the contents of the M(1) and M(2) octahedral sites, and the results are reviewed here. Compounds belonging to the alluaudite structural family have been the focus of synthetic mineral studies for decades owing to the open-framework architecture and their unique physical properties. Improvements in synthesis methods have allowed researchers to substitute a wide range of elements into the alluaudite structure.

Publisher

Mineralogical Association of Canada

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3