Secondary structure and function of the 5′-proximal region of the equine arteritis virus RNA genome

Author:

VAN DEN BORN ERWIN,GULTYAEV ALEXANDER P.,SNIJDER ERIC J.

Abstract

Nidoviruses produce an extensive 3′-coterminal nested set of subgenomic mRNAs, which are used to express their structural proteins. In addition, arterivirus and coronavirus mRNAs contain a common 5′ leader sequence, derived from the genomic 5′ end. The joining of this leader sequence to different segments (mRNA bodies) from the genomic 3′-proximal region presumably involves a unique mechanism of discontinuous minus-strand RNA synthesis. Key elements in this process are the so-called transcription-regulating sequences (TRSs), which determine a base-pairing interaction between sense and antisense viral RNA that is essential for leader-to-body joining. To identify RNA structures in the 5′-proximal region of the equine arteritis virus genome that may be involved in subgenomic mRNA synthesis, a detailed secondary RNA structure model was established using bioinformatics, phylogenetic analysis, and RNA structure probing. According to this structure model, the leader TRS is located in the loop of a prominent hairpin (leader TRS hairpin; LTH). The importance of the LTH was supported by the results of a mutagenesis study using an EAV molecular clone. Besides evidence for a direct role of the LTH in subgenomic RNA synthesis, indications for a role of the LTH region in genome replication and/or translation were obtained. Similar LTH structures could be predicted for the 5′-proximal region of all arterivirus genomes and, interestingly, also for most coronaviruses. Thus, we postulate that the LTH is a key structural element in the discontinuous subgenomic RNA synthesis and is likely critical for leader TRS function.

Publisher

Cold Spring Harbor Laboratory

Subject

Molecular Biology

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3