A modified Aquila optimizer algorithm for optimization energy-efficient no-idle permutation flow shop scheduling problem

Author:

Utama Dana Marsetiya,Sanafa Nabilah

Abstract

Increasing energy consumption has faced challenges and pressures for modern manufacturing operations. The production sector accounts for half of the world's total energy consumption. Reducing idle machine time by em­ploying No-Idle Permutation Flow Shop Scheduling (NIPFSP) is one of the best decisions for reducing energy consumption. This article modifies one of the energy consumption-solving algorithms,  the Aquila Optimizer (AO) algo­rithm. This research contributes by 1) proposing novel AO procedures for solving energy consumption problems with NIPFSP and 2) expanding the literature on metaheuristic algorithms that can solve energy consumption problems with NIPFSP. To analyze whether the AO algorithm is optimal, we compared by using the Grey Wolf Optimizer (GWO) algorithm. It com­pares these two algorithms to tackle the problem of energy consumption by testing four distinct problems. Comparison of the AO and GWO algorithm is thirty times for each case for each population and iteration. The outcome of comparing the two algorithms is using a t-test on independent samples and ECR. In all case studies, the results demonstrate that the AO algorithm has a lower energy consumption value than GWO. The AO algorithm is there­fore recommended for minimizing energy consumption because it can produce more optimal results than the comparison algorithm.

Publisher

Universitas Serang Raya

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3