An Efficient Binary Hybrid Equilibrium Algorithm for Binary Optimization Problems: Analysis, Validation, and Case Studies

Author:

Abdel-Basset Mohamed,Mohamed Reda,Hezam Ibrahim M.,Sallam Karam M.ORCID,Hameed Ibrahim A.

Abstract

AbstractBinary optimization problems belong to the NP-hard class because their solutions are hard to find in a known time. The traditional techniques could not be applied to tackle those problems because the computational cost required by them increases exponentially with increasing the dimensions of the optimization problems. Therefore, over the last few years, researchers have paid attention to the metaheuristic algorithms for tackling those problems in an acceptable time. But unfortunately, those algorithms still suffer from not being able to avert local minima, a lack of population diversity, and low convergence speed. As a result, this paper presents a new binary optimization technique based on integrating the equilibrium optimizer (EO) with a new local search operator, which effectively integrates the single crossover, uniform crossover, mutation operator, flipping operator, and swapping operator to improve its exploration and exploitation operators. In a more general sense, this local search operator is based on two folds: the first fold borrows the single-point crossover and uniform crossover to accelerate the convergence speed, in addition to avoiding falling into local minima using the mutation strategy; the second fold is based on applying two different mutation operators on the best-so-far solution in the hope of finding a better solution: the first operator is the flip mutation operator to flip a bit selected randomly from the given solution, and the second operator is the swap mutation operator to swap two unique positions selected randomly from the given solution. This variant is called a binary hybrid equilibrium optimizer (BHEO) and is applied to three common binary optimization problems: 0–1 knapsack, feature selection, and the Merkle–Hellman knapsack cryptosystem (MHKC) to investigate its effectiveness. The experimental findings of BHEO are compared with those of the classical algorithm and six other well-established evolutionary and swarm-based optimization algorithms. From those findings, it is concluded that BHEO is a strong alternative to tackle binary optimization problems. Quantatively, BHEO could reach an average fitness of 0.090737884 for the feature section problem and an average difference from the optimal profits for some used Knapsack problems of 2.482.

Funder

King Saud University

NTNU Norwegian University of Science and Technology

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3