Abstract
AbstractNutrient pollution causing harmful algal blooms and eutrophication is a major threat to aquatic systems. Throughout North America, agricultural activities are the largest source of excess nutrients entering these systems. Agricultural intensification has also been a driver in the historical removal of depressional wetlands, contributing to increased hydrological connectivity across watersheds, and moving more nutrient runoff into terminal waterbodies such as the Laurentian Great Lakes and Gulf of Mexico. The Prairie Pothole Region of North America (PPR) supports grassland, cropland, wetland, and riverine systems that connect to the Missouri, Mississippi, and Red River Basins. There is a need to synthesize scientific understanding to guide more targeted conservation efforts and better understand knowledge gaps. We reviewed 200 empirical studies and synthesized results from across a minimum of 9 and maximum of 43 wetland basins (depending on the variable data available). We found an average wetland removal rate of nitrate and phosphate of 53% and 68%, respectively. Literature also showed sedimentation rates to be twice as high in wetland basins situated within croplands compared to grasslands. Our synthesis enhances understanding of nutrient processing in wetlands of the PPR and highlights the need for more empirical field-based studies throughout the region.
Funder
Natural Resources Conservation Service
U.S. Geological Survey
Publisher
Springer Science and Business Media LLC
Subject
General Environmental Science,Ecology,Environmental Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献