Author:
Saptomo Satyanto Krido,Setiawan Budi Indra,Chadirin Yudi,Osawa Kazutoshi,Nagano Toshihide,Mizuno Kosuke,Novarina Dian,Sudarman Susilo,Aruan Aulia
Abstract
AbstractIt was crucial to acquire soil CO2 flux data from a bare peatland site in Kampar Peninsula, Riau Province, Indonesia so as to evaluate the carbon budget of the site in which water is managed, drained, and utilized for acacia plantation. CO2 flux was continuously measured from July 2012 to February 2013 using an automatic soil CO2 flux measurement system. In this study, the factors affecting carbon emission were analyzed and tested for indirect CO2 flux estimation, and the results showed that CO2 flux varied with weather, water, and soil-related variables, and where there was rainfall, soil temperature and soil moisture both played an important role. CO2 flux was modeled using an artificial neural network (ANN) approach with inputs of soil moisture, temperature, and electrical conductivity (EC) as proxy variables. Based on the measurements, the total carbon dioxide (CO2) emission during the measurement period from July 2012 to June 2013 was 52.25 t ha−1. Total CO2 emission in 2012 was estimated as 54.86 t ha−1 using the ANN model. Furthermore, the results generated by the model showed that levels of CO2 flux declined as the temperature decreased, and soil moisture increased toward soil water saturation.
Publisher
Springer Nature Singapore
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献