Internal erosion of a gap-graded soil and influences on the critical state

Author:

Li Shijin,Russell Adrian R.ORCID,Muir Wood David

Abstract

AbstractWater retaining structures are critical elements of civil infrastructure. Internal erosion of soils forming the containment structures may occur progressively and lead to expensive maintenance costs or failures. The strength, stress–strain behavior and critical state of soils which have eroded, as well as the characteristics of the erosion, may be affected by hydraulic gradient, confining stress and relative density of the soil at the start of the erosion. Here, erosion and triaxial tests have been conducted on gap-graded soil samples. The tests and results are novel as the samples were prepared to be homogenous post-erosion and prior to triaxial testing by adopting a new sample formation procedure. The post-erosion homogeneity was evaluated in terms of particle size distribution and void ratio along a sample’s length. The erosion-induced mechanical property changes can then be linked to a measure of initial state, more reliably than when erosion causes samples to be heterogeneous. The results show that erosion causes the critical state line in the compression plane to move upwards. The movement is lesser than the increase in void ratio caused by erosion. The state parameter is therefore reduced, consistent with the soil’s reduced peak strength and its less dilative response. Regarding the erosion characteristics, the flow rate decreases with the increase in initial relative density or effective stress, but increases with the increase in the hydraulic gradient being applied. The cumulative eroded soil mass increases with the increase in hydraulic gradient and decreases with the increase in initial density and effective confining stress.

Funder

Australia Research Council

ARC Future Fellowship

National Natural Science Foundation of China

University of New South Wales

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3