A deep learning-based approach for electrical equipment remaining useful life prediction

Author:

Fu Huibin,Liu Ying

Abstract

AbstractElectrical equipment maintenance is of vital importance to management companies. Efficient maintenance can significantly reduce business costs and avoid safety accidents caused by catastrophic equipment failures. In the current context, predictive maintenance (PdM) is becoming increasingly popular based on machine learning approaches, while its research on electrical equipment such as low-voltage contactors is in its infancy. The failure modes are mainly fusion welding and explosion, and a few are unable to switch on. In this study, a data-driven approach is proposed to predict the remaining useful life (RUL) of the low-voltage contactor. Firstly, the three-phase alternating voltage and current records the life of electrical equipment by tracking the number of times it has been operated. Secondly, the failure-relevant features are extracted by using the time domain, frequency domain, and wavelet methods. Then, a CNN-LSTM network is designed and used to train an electrical equipment RUL prediction model based on the extracted features. An experimental study based on ten datasets collected from low-voltage AC contactors reveals that the proposed method shows merits in comparison with the prevailing deep learning algorithms in terms of MAE and RMSE.

Publisher

Springer Science and Business Media LLC

Reference35 articles.

1. R. Ahmad, S. Kamaruddin, An overview of time-based and condition-based maintenance in industrial application. Comput. Ind. Eng. 63(1), 135–149 (2012)

2. P. Andersson, L.-G. Mattsson, Service innovations enabled by the “internet of things”. IMP J. (2015)

3. Y. Lei, N. Li, L. Guo, N. Li, T. Yan, J. Lin, Machinery health prognostics: a systematic review from data acquisition to RUL prediction. Mech. Syst. Signal Process. 104, 799–834 (2018)

4. M. Haarman, M. Mulders, C. Vassiliadis, Predictive maintenance 4.0: predict the unpredictable. PwC and Mainnovation 4 (2017)

5. C. Chen, Y. Liu, X. Sun, S. Wang, C.D. Cairano-Gilfedder, S. Titmus, A.A. Syntetos, Reliability analysis using deep learning, in ASME IDETC-CIE (ASME, Quebec, Canada)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3