DCCAFN: deep convolution cascade attention fusion network based on imaging genomics for prediction survival analysis of lung cancer

Author:

Jia Liye,Ren Xueting,Wu Wei,Zhao Juanjuan,Qiang Yan,Yang Qianqian

Abstract

AbstractRecently, lung cancer prediction based on imaging genomics has attracted great attention. However, such studies often have many challenges, such as small sample size, high-dimensional information redundancy, and the inefficiency of multimodal fusion. Therefore, in this paper, a deep convolution cascade attention fusion network (DCCAFN) based on imaging genomics is proposed for the prediction of lung cancer patients’ survival. The network consists of three modules: an image feature extraction module (IFEM), a gene feature extraction module (GFEM), and an attention fusion network (AFN). In the IFEM, a pretrained residual network based on transfer learning is used to extract deep image features to fully capture the computed tomography (CT) image information conducive to prognosis prediction. In the GFEM, the F-test is first used for gene screening to eliminate redundant information, and then, a cascade network with the convolution cascade module (CCM) that contains a convolution operation, a pooling operation, and an ensemble forest classifier is designed to better extract the gene features. In the AFN, a bimodal attention fusion mechanism is proposed to fuse deep image features and gene features to improve the performance of predicting lung cancer survival. The experimental results show that the DCCAFN model achieves good performance, and its accuracy and AUC are 0.831 and 0.816, respectively. It indicates that the model is an effective multimodal data fusion method for predicting the survival prognosis of lung cancer, which can greatly help physicians stratify patients' risks, and achieve personalized treatment for improving the quality of patients' lives.

Funder

National Natural Science Foundation of China

the Major Program of the National Natural Science Foundation of China

Central and local development fund projects

Basic Research Plan Project of Shanxi Province

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3