A flocking control algorithm of multi-agent systems based on cohesion of the potential function

Author:

Li Chenyang,Yang Yonghui,Jiang Guanjie,Chen Xue-BoORCID

Abstract

AbstractFlocking cohesion is critical for maintaining a group’s aggregation and integrity. Designing a potential function to maintain flocking cohesion unaffected by social distance is challenging due to the uncertainty of real-world conditions and environments that cause changes in agents’ social distance. Previous flocking research based on potential functions has primarily focused on agents’ same social distance and the attraction–repulsion of the potential function, ignoring another property affecting flocking cohesion: well depth, as well as the effect of changes in agents’ social distance on well depth. This paper investigates the effect of potential function well depths and agent’s social distances on the multi-agent flocking cohesion. Through the analysis, proofs, and classification of these potential functions, we have found that the potential function well depth is proportional to the flocking cohesion. Moreover, we observe that the potential function well depth varies with the agents’ social distance changes. Therefore, we design a segmentation potential function and combine it with the flocking control algorithm in this paper. It enhances flocking cohesion significantly and has good robustness to ensure the flocking cohesion is unaffected by variations in the agents’ social distance. Meanwhile, it reduces the time required for flocking formation. Subsequently, the Lyapunov theorem and the LaSalle invariance principle prove the stability and convergence of the proposed control algorithm. Finally, this paper adopts two subgroups with different potential function well depths and social distances to encounter for simulation verification. The corresponding simulation results demonstrate and verify the effectiveness of the flocking control algorithm.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3