Terrain slope parameter recognition for exoskeleton robot in urban multi-terrain environments

Author:

Guo Ran,Li Wenjiang,He Yulong,Zeng Tangjian,Li Bin,Song Guangkui,Qiu Jing

Abstract

AbstractLower limb augmentation exoskeletons (LLAE) have been applied in several domains to enforce human walking capability. As humans can adjust their joint moments and generate different amounts of mechanical energy while walking on different terrains, the LLAEs should provide adaptive augmented torques to the wearer in multi-terrain environments, which requires LLAEs to implement accurate terrain parameter recognition. However, the outputs of previous terrain parameter recognition algorithms are more redundant, and the algorithms have higher computational complexity and are susceptible to external interference. Therefore, to resolve the above issues, this paper proposed a neural network regression (NNR)-based algorithm for terrain slope parameter recognition. In particular, this paper defined for the first time a unified representation of terrain parameters: terrain slope (TS), a single parameter that can provide enough information for exoskeleton control. In addition, our proposed NNR model uses only basic human parameters and LLAE joint motion posture measured by an Inertial Measurement Unit (IMU) as inputs to predict the TS, which is computationally simpler and less susceptible to interference. The model was evaluated using K-fold cross-validation and the results showed that the model had an average error of only 2.09$$^\circ $$ . To further validate the effectiveness of the proposed algorithm, it was verified on a homemade LLAE and the experimental results showed that the proposed TS parameter recognition algorithm only produces an average error of 3.73$$^\circ $$ in multi-terrain environments. The defined terrain parameters can meet the control requirements of LLAE in urban multi-terrain environments. The proposed TS parameter recognition algorithm could facilitate the optimization of the adaptive gait control of the exoskeleton system and improve user experience, energy efficiency, and overall comfort.

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3