Genetic and ecological inheritance of plant growth-promoting rhizobacteria

Author:

Yaghoubi Khanghahi Mohammad,Spagnuolo Matteo,Filannino Pasquale,Minervini Fabio,Crecchio CarmineORCID

Abstract

Abstract Background The utilization of beneficial (Rhizo) bacteria, as an alternative to traditional fertilizers, has emerged as an eco-friendly strategy for ameliorating sustainable agricultural production. This approach aims to reduce the use of agrochemicals and minimize environmental pollution. Scope This review provides an updated insight into the ecological impact of plant growth-promoting rhizobacteria (PGPR), focusing on the resident microbiome and its potential transferability to the next generation of plants. Conclusion In this context, PGPR are assumed to alter the rhizosphere microbiome by outcompeting the existing taxa through nutrient deprivation, acidification of the environment, metabolites production, and consequently, increasing the copiotrophic taxa. Such modifications can maximize the beneficial interactions of plant-PGPR by increasing the bioavailability of nutrients and handling diverse signaling pathways. The effects of interactions within the PGPR-root system can adjust the composition of root exudates and influence the release of bioactive molecules by the root, especially under stress conditions, which can act as signals to reactivate and recruit the beneficial microbes in the rhizosphere and endosphere in favor of the plants. Such changes in microbiome structure can occur gradually over time, even if the survival rate of PGPR in soil and their re-colonization efficiency inside plant tissue are limited. The aforementioned modifications in the rhizosphere and plant microbiome have the potential to increase the survival chances of the progeny plants growing under the same stress conditions. Establishing a comprehensive and robust knowledge framework that addresses all of these issues is critical for significantly advancing the field of microbe-plant interactions and for developing reliable applications of PGPR.

Funder

European Union Next-Generation EU

Università degli Studi di Bari Aldo Moro

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3