Host-specific and tissue-dependent orchestration of microbiome community structure in traditional rice paddy ecosystems

Author:

Huang Weijuan,Gilbert Sarah,Poulev Alexander,Acosta Kenneth,Lebeis Sarah,Long Chunlin,Lam EricORCID

Abstract

Abstract Background and aim Rice and duckweed are two monocotyledonous plants that naturally coexist in paddy fields. While the presence of duckweed in paddy fields significantly improves rice productivity, the interplay between soil microbes and the two plant hosts in this agroecosystem remains unexplored. Methods We compared the bacterial community structure between duckweed, rice and soil from multiple rice paddies. We also isolated bacteria from these communities and characterized their modes of bacterial colonization and plant growth-promotion using model plants. Results Our data indicate that host-specific and tissue-dependent factors reproducibly orchestrate the bacterial community structure associated with their plant hosts. This is corroborated by results from culture-dependent approaches in which the dominant genus Pantoea isolated from rice aerial tissues can strongly attach and colonize gnotobiotic duckweed in spite of the low representation of this bacterial genus in the natural duckweed microbiome. Our study identified a core of 254 bacterial taxa that are consistently found in all rice and duckweed tissue samples from rice paddy fields. Furthermore, characterizing auxin-producing bacteria isolates from both plant species identified potential plant growth-promoting bacteria that may improve growth for both duckweed and rice in paddy fields. Conclusions Results from this work provide evidence for the importance of the host tissue and species context in determining plant colonization by microbes in the paddy field system. The resources generated in this study could facilitate the agronomic deployment of microbes for more sustainable rice production.

Funder

National Natural Science Foundation of China

State Key Laboratory of Desert and Oasis Ecology

U.S. Department of Energy

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3