Native mycorrhizal communities in maize roots as affected by plant genotype, starter fertilization and a seed-applied biostimulant

Author:

Ujvári Gergely,Grassi Arianna,Cristani Caterina,Pagliarani Irene,Avio Luciano,Blandino Massimo,Capo Luca,Giovannetti Manuela,Turrini Alessandra,Agnolucci MonicaORCID

Abstract

Abstract Background and aims One of the most promising strategies for sustainable intensification of crop production involves the utilization of beneficial root-associated microorganisms, such as plant growth-promoting bacteria and arbuscular mycorrhizal fungi (AMF). The aim of this study was to investigate whether a seed-applied biostimulant, based on the bacterial strain Bacillus amyloliquefaciens IT-45 and a plant polysaccharide extract, and crop enhancement tools, such as hybrids with contrasting early vigor and nitrogen (N) plus phosphorus (P) starter fertilization, and their interactions, shape the communities of native root-colonizing AMF symbionts in maize. Methods A factorial growth chamber experiment was set up with two maize genotypes in natural soil. Mycorrhizal colonization was evaluated after root staining. The diversity and composition of AMF communities were assessed by PCR-DGGE of the 18S rRNA gene and amplicon sequencing. Results N and P fertilization determined a consistent reduction of AMF root colonization and, in combination of biostimulant, a reduction of AMF richness. The biostimulant alone generally did not affect AMF colonization or the community biodiversity. In addition the effect of the two factors were modulated by maize genotype. In all treatments, predominant AMF were represented by Glomus sp. and Funneliformis mosseae, while populations of the genus Rhizoglomus were rarely detected in biostimulant and NP fertilization treatments. Conclusion The results of this study increase our understanding of how the biostimulant seed treatment may affect native AMF communities, depending on NP fertilization and maize genotype and may improve the implementation of innovative tools in sustainable and resilient agroecosystems.

Funder

Università di Pisa

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3