Short-term impact of crop diversification on soil carbon fluxes and balance in rainfed and irrigated woody cropping systems under semiarid Mediterranean conditions

Author:

Martínez-Mena MaríaORCID,Boix-Fayos Carolina,Carrillo-López Efrain,Díaz-Pereira Elvira,Zornoza Raúl,Sánchez-Navarro Virginia,Acosta Jose A.,Martínez-Martínez Silvia,Almagro María

Abstract

Abstract Purpose Diversification practices such as intercropping in woody cropping systems have recently been proposed as a promising management strategy for addressing problems related to soil degradation, climate change mitigation and food security. In this study, we assess the impact of several diversification practices in different management regimes on the main carbon fluxes regulating the soil carbon balance under semiarid Mediterranean conditions. Methods The study was conducted in two nearby cropping systems: (i) a low input rainfed almond (Prunus dulcis Mill.) orchard cultivated on terraces and (ii) a levelled intensively irrigated mandarin (Citrus reticulata Blanco) orchard with a street-ridge morphology. The almond trees were intercropped with Capparis spinosa or with Thymus hyemalis While the mandarin trees were intercropped with a mixture of barley and vetch followed by fava bean. Changes caused by crop diversifications on C inputs into the soil and C outputs from the soil were estimated. Results Crop diversification did not affect soil organic carbon stocks but did affect the carbon inputs and outputs regulating the soil carbon balance of above Mediterranean agroecosystems. Crop diversification with perennials in the low-input rainfed woody crop system significantly improved the annual soil C balance in the short-term. However, crop diversification with annual species in the intensively managed woody crop system had not effect on the annual soil C balance. Conclusions Our results highlight the potential of intercropping with perennials in rainfed woody crop systems for climate change mitigation through soil carbon sequestration.

Funder

Centro de Edafología y Biología Aplicada del Segura

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3