Nanoscale zero-valent iron mitigates arsenic mobilization and accumulation in Sinapis alba grown on a metal(loid)-polluted soil treated with a dunite mining waste-compost amendment

Author:

Díaz A. M.,Forján R.,Gallego J. R.,Benavente-Hidalgo L.,Menéndez-Aguado J. M.,Baragaño D.ORCID

Abstract

Abstract Background and aim The use of amendments to immobilize metals in polluted soils is a widely accepted remediation approach, and in the framework of the circular economy, amendments produced from mining and/or biomass waste have gained relevance. However, the application of such amendments can also mobilize metalloids. Here we propose the combination of nanoscale zero-valent iron nanoparticles (nZVI) with dunite (mining waste) and compost for the remediation and restoration of soil affected by high concentrations of As and metals. Methods To this end, we treated pots containing the polluted soil with combinations of dunite, compost, and nZVI for 75 days. In addition, Sinapis alba was used to evaluate the effects of the amendments on pollutant accumulation in the plant. The mobility of the pollutants was monitored through TCLP extraction and by sampling pore water. Furthermore, pH, available P, and cation exchange capacity (CEC) were also determined. Results Dunite application led to the immobilization of metals, and supplied Mg, thus improving CEC. On the other hand, compost increased nutrient content, and also promoted plant growth. However, this amendment caused a dramatic increase in As accumulation in the plants. Finally, the application of nZVI in combination with the other two amendments was found to be the most appropriate strategy since it not only prevented As mobilization and accumulation but also added nutrients to the soil, thus promoting plant growth. Conclusion The combination of nZVI with dunite mining waste and compost proved effective for the remediation of soil simultaneously polluted by As and metals.

Funder

European Union-NextGenerationEU, Ministerio de Universidades, and Plan de Recuperación, Transformación y Resiliencia

Regional Government of Asturias

AEI/SPAIN, FEDER/EU

Universidad de Oviedo

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3