GPNMB Ameliorates Neuroinflammation Via the Modulation of AMPK/NFκB Signaling Pathway After SAH in Mice

Author:

Li Tao,Zhang Yuansheng,Lu Qixiong,Lei Li,Du Jingshu,Lu Xiaoyang

Abstract

AbstractGlycoprotein non-metastatic melanoma protein B (GPNMB) got its name from the first discovery in a cell line of non-metastatic melanoma. Later studies found that GPNMB is widely expressed in various tissues and cells of the human body, most abundant in neural tissue, epithelial tissue, bone tissue, and monocyte-macrophage system. GPNMB has been shown to have anti-inflammatory effects in a variety of neurological diseases, however, it has not been reported in subarachnoid hemorrhage (SAH). Male CD-1 mice were used and intra-arterial puncture method was applied to establish the SAH model. Exogenous recombinant GPNMB (rGPNMB) was injected intracerebroventricularly 1 h after SAH. SAH grading, brain edema and blood–brain barrier (BBB) integrity were quantified, and neurobehavioral tests were performed to evaluate the effect of GPNMB on the outcome. Dorsomorphin, the selective inhibitor on AMPK was introduced to study the downstream signaling through which the GPNMB works. Furthermore, western blot, immunofluorescence staining and ELISA were utilized to confirm the signaling. After SAH, GPNMB expression increased significantly as a result of the inflammatory response. GPNMB was expressed extensively in mouse microglia, astrocytes and neurons. The administration of rGPNMB could alleviate brain edema, restore BBB integrity and improve the neurological outcome of mice with SAH. GPNMB treatment significantly magnified the expression of p-AMPK while p-NFκB, IL-1β, IL-6 and TNF-α were suppressed; in the meantime, the combined administration of GPNMB and AMPK inhibitor could decrease the intensity of p-AMPK and reverse the quantity of p-NFκB and the above inflammatory cytokines. GPNMB has the potential of ameliorating the brain edema and neuroinflammation, protecting the BBB and improving the neurological outcome, possibly via the AMPK/NFκB signaling pathway. Graphical Abstract

Funder

The Fund for Young Doctors with the First People’s Hospital of Yunnan Province,China

Yunnan Fundamental Research Projects, China

National Natural Science Foundation of China

the Joint Projects of Yunnan Provincial Science and Technology Department and Kunming Medical University for Applied Basic Research,China

The outstanding postgraduate research program of Kunming University of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology,Immunology,Immunology and Allergy,Neuroscience (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3