Abstract
AbstractCluster structures have been established on numerous algebraic varieties. These lectures focus on the Grassmannian variety and explain the cluster structures on it. The tools include dimer models on surfaces, associated algebras, and the study of associated module categories.
Publisher
Springer Science and Business Media LLC
Subject
Anesthesiology and Pain Medicine
Reference32 articles.
1. Assem, I., Reutenauer, C., Smith, D.: Friezes. Adv. Math. 225(6), 3134–3165 (2010)
2. Baur, K., Bogdanic, D.: Extensions between Cohen–Macaulay modules of Grassmannian cluster categories. J. Algebraic Combin. 45(4), 965–1000 (2017)
3. Baur, K., Bogdanic, D., Garcia Elsener, A.: Cluster categories from Grassmannians and root combinatorics. Nagoya Math. J., 240, 322–354. (2020). https://doi.org/10.1017/nmj.2019.14
4. Baur, K., Bogdanic, D., Li, J.-R.: Construction of rank $$2$$ indecomposable modules in Grassmannian cluster categories. (2020). arXiv:2011.14176 [math.RT]
5. Baur, K., Faber, E., Gratz, S., Serhiyenko, K., Todorov, G.: Friezes satisfying higher SL$$_k$$-determinants. Algebra Number Theory (2021)