Prioritizing drug targets in systemic lupus erythematosus from a genetic perspective: a druggable genome-wide Mendelian randomization study

Author:

Gao Yuan,Zhou Youtao,Lin Zikai,Chen Fengzhen,Wu Haiyang,Peng Chusheng,Xie YingyingORCID

Abstract

Abstract Objectives Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease with an unsatisfactory state of treatment. We aim to explore novel targets for SLE from a genetic standpoint. Methods Cis-expression quantitative trait loci (eQTLs) for whole blood from 31,684 samples provided by the eQTLGen Consortium as well as two large SLE cohorts were utilized for screening and validating genes causally associated with SLE. Colocalization analysis was employed to further investigate whether changes in the expression of risk genes, as indicated by GWAS signals, influence the occurrence and development of SLE. Targets identified for drug development were evaluated for potential side effects using a phenome-wide association study (PheWAS). Based on the multiple databases, we explored the interactions between drugs and genes for drug prediction and the assessment of current medications. Results The analysis comprised 5427 druggable genes in total. The two-sample Mendelian randomization (MR) in the discovery phase identified 20 genes causally associated with SLE and validated 8 genes in the replication phase. Colocalization analysis ultimately identified five genes (BLK, HIST1H3H, HSPA1A, IL12A, NEU1) with PPH4 > 0.8. PheWAS further indicated that drugs acting on BLK and IL12A are less likely to have potential side effects, while HSPA1A and NEU1 were associated with other traits. Four genes (BLK, HSPA1A, IL12A, NEU1) have been targeted for drug development in autoimmune diseases and other conditions. Conclusions .This study identified five genes as therapeutic targets for SLE. Repurposing and developing drugs targeting these genes is anticipated to improve the existing treatment state for SLE. Key Points We identified five gene targets of priority for the treatment of SLE, with BLK and IL12A indicating fewer side effects.Among the existing drugs that target these candidate genes, Ustekinumab, Ebdarokimab, and Briakinumab (targeting the IL12 gene) and CD24FC (targeting HSPA1A) may potentially be repurposed for the treatment of SLE.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3