An active semi-supervised deep learning model for human activity recognition

Author:

Bi HaixiaORCID,Perello-Nieto Miquel,Santos-Rodriguez Raul,Flach Peter,Craddock Ian

Abstract

AbstractHuman activity recognition (HAR), which aims at inferring the behavioral patterns of people, is a fundamental research problem in digital health and ambient intelligence. The application of machine learning methods in HAR has been investigated vigorously in recent years. However, there are still a number of challenges confronting the task, where one significant barrier lies in the longstanding shortage of annotations. To address this issue, we establish a new paradigm for HAR, which integrates active learning and semi-supervised learning into one framework. The main idea is to reduce the annotation cost by actively selecting the most informative samples for annotation, as well as leveraging the unlabelled instances in a semi-supervised way. In particular, we propose to utilize the massive unlabelled data via temporal ensembling of convolutional neural networks (CNN), which yields robust consensus predictions by aggregating the outputs of the training networks on different epochs. We conducted extensive experiments on three public benchmark datasets. The proposed method achieves Macro F1 values of 0.76, 0.45 and 0.91 in a low annotation scenario on PAMAP2, USCHAD and UCIHAR datasets respectively, outperforming a multitude of state-of-the-art deep models. The ablation study proves the effectiveness of the two components of the framework, i.e., active learning-based sample selection and semi-supervised model training with temporal ensembling, in alleviating the issue of insufficient labels. Cross-validation and statistical significance experiments further demonstrate the robustness and generalization ability of the proposed method. The source codes are available at https://github.com/HaixiaBi1982/ActSemiCNNAct.

Funder

engineering and physical sciences research council

Publisher

Springer Science and Business Media LLC

Subject

General Computer Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3