A statistical bonded particle model study on the effects of rock heterogeneity and cement strength on dynamic rock fracture

Author:

Wessling AlbinORCID,Larsson SimonORCID,Kajberg JörgenORCID

Abstract

AbstractNumerical modelling and simulation can be used to gain insight about rock excavation processes such as rock drilling. Since rock materials are heterogeneous by nature due to varying mechanical and geometrical properties of constituent minerals, laboratory observations exhibit a certain degree of unpredictability, e.g. with regard to measured strength and crack propagation. In this work, a recently published heterogeneous bonded particle model is further developed and used to investigate dynamic rock fracture in a Brazilian disc test. The rock heterogeneities are introduced in two steps—a geometrical heterogeneity due to statistically distributed grain sizes and shapes, and a mechanical heterogeneity by distributing mechanical properties using three Weibull distributions. The first distribution is used for assigning average bond properties of the grains, the second one for the intragranular bond properties and the third one for the bond properties of the intergranular cementing. The model is calibrated for Kuru black diorite using previously published experimental data from high-deformation rate tests of Brazilian discs in a split-Hopkinson pressure bar device, where high-speed imaging was used to detect initiations of cracks and their growth. A parametric study is conducted on the Weibull heterogeneity index of the average bond properties and the grain cement strength and evaluated in terms of crack initiation and propagation, indirect tensile stress, strain and strain rate. The results show that this modelling approach is able to reproduce key phenomena of the dynamic rock fracture, such as stochastic crack initiation and propagation, as well as the magnitude and variations of measured quantities. Furthermore, the cement strength is found to be a key parameter for crack propagation path and time, overloading magnitudes and indirect tensile strain rate.

Funder

VINNOVA

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Fluid Flow and Transfer Processes,Modeling and Simulation,Numerical Analysis,Civil and Structural Engineering,Computational Mechanics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3