Investigating the effects of PTEN mutations on cGAS-STING pathway in glioblastoma tumours

Author:

Dogan Eda,Yildirim Zafer,Akalin Taner,Ozgiray Erkin,Akinturk Nevhis,Aktan Cagdas,Solmaz Asli Ece,Biceroglu Huseyin,Caliskan Kadri Emre,Ertan Yesim,Yurtseven Taskin,Kosova Buket,Bozok VildanORCID

Abstract

Abstract Background PTEN is a tumour suppressor gene and well-known for being frequently mutated in several cancer types. Loss of immunogenicity can also be attributed to PTEN loss, because of its role in establishing the tumour microenvironment. Therefore, this study aimed to represent the link between PTEN and cGAS-STING activity, a key mediator of inflammation, in tumour samples of glioblastoma patients. Methods Tumour samples of 36 glioblastoma patients were collected. After DNA isolation, all coding regions of PTEN were sequenced and analysed. PTEN expression status was also evaluated by qRT-PCR, western blot, and immunohistochemical methods. Interferon-stimulated gene expressions, cGAMP activity, CD8 infiltration, and Granzyme B expression levels were determined especially for the evaluation of cGAS-STING activity and immunogenicity. Results Mutant PTEN patients had significantly lower PTEN expression, both at mRNA and protein levels. Decreased STING, IRF3, NF-KB1, and RELA mRNA expressions were also found in patients with mutant PTEN. Immunohistochemistry staining of PTEN displayed expressional loss in 38.1% of the patients. Besides, patients with PTEN loss had considerably lower amounts of IFNB and IFIT2 mRNA expressions. Furthermore, CD8 infiltration, cGAMP, and Granzyme B levels were reduced in the PTEN loss group. Conclusion This study reveals the immunosuppressive effects of PTEN loss in glioblastoma tumours via the cGAS-STING pathway. Therefore, determining the PTEN status in tumours is of great importance, like in situations when considering the treatment of glioblastoma patients with immunotherapeutic agents.

Funder

Ege University

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Neurology (clinical),Neurology,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3