Alkali-activated materials containing mine tailings and zeolite for seepage water treatment in a closed nickel mine

Author:

Laukkanen J.ORCID,Runtti H.,Lancellotti I.,Luukkonen T.,Leonelli C.,Lassi U.

Abstract

AbstractIn the present study, alkali-activated materials were assessed as adsorbents for mine water treatment. The composition of alkali-activated materials, involving mixtures of metakaolin, blast-furnace slag, mine tailings, and zeolite, was optimized based on their leaching behavior and adsorption performance. The most effective adsorbent contained solely blast furnace slag as an aluminosilicate precursor and was selected for a pilot-scale study at a closed nickel mine in Finland. In the pilot, seepage water from a gangue area with an influent flow rate of 0.5 m3/d was treated using a permeable reactive barrier set-up containing 10 kg of slag-based adsorbent prepared by a granulation-alkali activation process. During a one-week experiment, the adsorbent granules were capable of effectively uptaking Ni, Fe, and Mn from the seepage water; the removal percentages of Ni, Fe, and Mn were 82.4%, 81.6%, and 82.5%, respectively. The results indicated the feasibility of blast furnace slag-based adsorbents for toxic element removal in a potentially sustainable approach.

Funder

Academy of Finland

Keski-Pohjanmaan Rahasto

KAUTE-Säätiö

EU regional fund

Kerttu Saalasti Säätiö

Teknologiateollisuuden 100-Vuotisjuhlasäätiö

University of Oulu

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3