Publisher
Springer Science and Business Media LLC
Reference39 articles.
1. Alves MA, Oliveira BAS, Maia W, Soares WS, Ferreira DBS, Santos Ana PP, Silvestrow FP, Daher EL, Júnior Osmar Pinto (2022a) Lightning warning prediction with multi-source data. In: International conference on lightning protection (ICLP). IEEE, pp 349–354. https://doi.org/10.1109/ICLP56858.2022.9942488
2. Alves MA, Oliveira BAS, Silvestrow Fernando P, Rodrigues Luiz FM, Daher Eugenio L, Maia W, Soares WS, Santos Ana PP, Ferreira Douglas BS, Junior Osmar Pinto (2022b) Predição de descargas atmosféricas utilizando machine learning para prevenção de acidentes. In IX Simpósio Brasileiro de Sistemas Elétricos (IX SBSE). SBA
3. Arnold Tafferner C, Forster M, Hagen C, Keil T, Zinner HV (2008) Development and propagation of severe thunderstorms in the Upper Danube catchment area: Towards an integrated nowcasting and forecasting system using real-time data and high-resolution simulations. Meteorol Atmos Phys 101(3):211–227. https://doi.org/10.1007/s00703-008-0322-7
4. Bala K, Choubey DK, Paul S (2017) Soft computing and data mining techniques for thunderstorms and lightning prediction: a survey. In: 2017 International conference of electronics, communication and aerospace technology (ICECA), vol 1. IEEE, pp 42–46. https://doi.org/10.1109/ICECA.2017.8203729
5. Bao R, Zhang Y, Ma BJ, Zhang Z, He Z (2022) An artificial neural network for lightning prediction based on atmospheric electric field observations. Remote Sens 14(17):4131. https://doi.org/10.3390/rs14174131