Funder
Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro
Publisher
Springer Science and Business Media LLC
Reference30 articles.
1. Barino, F. O., et al. (2020). Correlated time-series in multi-day-ahead streamflow forecasting using convolutional networks. IEEE Access, 8, 215748–215757.
2. Bessa, R. J., Miranda, V., & Gama, J. (2009). Entropy and correntropy against minimum square error in offline and online three-day ahead wind power forecasting. IEEE Transaction on Power Systems, 24(4), 1657–1666.
3. Bishop, C. M. (1995). Neural networks for pattern recognition. Claredon Press.
4. CPTEC/INPE, n.d. Clima Monitoramento Brasil—CPTEC/INPE. [Online] Available at: http://clima1.cptec.inpe.br/monitoramentobrasil/pt [Accessed August 2021].
5. Diniz, A. L. et al., (2018). Short/mid-term hydrothermal dispatch and spot pricing for large-scale systems-the case of Brazil. 2018 Power Systems Computation Conference (PSCC), pp. 1–7.