Skip to main content
Log in

Association of carotid atherosclerosis markers with all-cause and cardiovascular disease–specific mortality in persons with type 2 diabetes: a causal mediation analysis with glucose variation

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

Glucose variation (GV) is independently associated with mortality in patients with diabetes. However, no study has examined the effects of carotid atherosclerosis markers on mortality after considering GV. Our purpose is to investigate the independent effects of carotid atherosclerosis markers in persons with type 2 diabetes (T2DM) after considering GV and the mediation effects of carotid atherosclerosis markers on associations between GV with cardiovascular disease (CVD) mortality.

Materials and methods

This study is a retrospective cohort study including 3628 persons with T2DM who were admitted to a medical center between January 01, 2001 and October 31, 2021. GV was defined as a coefficient of variation (CV) of repeated measurements within a year before the index date (date of first IMT assessment). Carotid atherosclerosis markers included intimamedia thickness (IMT), plaque, and stenosis. The outcomes consisted of all-cause and expanded cardiovascular disease (CVD) mortality. Cox proportional hazards models were applied.

Results

Among the participants, 286 (7.9%) had IMT ≥ 2 mm, 2834 (78.1%) had carotid plaque, and 464 (12.8%) had carotid stenosis ≥ 50%. When GV was considered, IMT, carotid plaque, and carotid stenosis were significant factors for all-cause mortality (except IMT considering HbA1c-CV) and expanded CVD mortality. IMT was a significant mediator in the associations of fasting plasma glucose (FPG)-CV with all-cause and expanded CVD mortality (2 and 3.19%, respectively), and carotid stenosis was a significant mediator in the association between FPG-CV and expanded CVD mortality (3.83%).

Conclusions

Our statistical evaluations show suggests that carotid atherosclerosis markers are important predictors of CVD mortality in persons with T2DM if GV is considered. In addition, IMT and carotid stenosis were significant mediators in the association between GV and mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

DM:

Diabetes mellitus

ASCVD:

Atherosclerotic cardiovascular disease

MI:

Myocardial infarction

IMT:

Intimamedia thickness

FPG:

Fasting plasma glucose

HbA1c:

Glycated hemoglobin

DCMP:

Diabetes Care Management Program

CMUH:

China Medical University Hospital

ICD-9-CM:

International Classification of Disease, 9th Revision, Clinical Modification

LDL-C:

Low-density lipoprotein − cholesterol

HDL-C:

High-density lipoprotein − cholesterol

TC:

Total cholesterol

TG:

Triglyceride

BMI:

Body mass index

uACR:

Urine albumin − creatinine ratio

CV:

Coefficient of variation

eGFR:

Estimated glomerular filtration rate

CCAs:

Common carotid arteries

ICAs:

Internal carotid arteries)

CVD:

Cardiovascular disease

ICD-10-CM:

International Classification of Disease, Tenth Revision, Clinical

HR:

Hazard ratio

CI:

Confidence interval

References

  1. Chawla A, Chawla R, Jaggi S (2016) Microvasular and macrovascular complications in diabetes mellitus: distinct or continuum? Indian J Endocrinol Metab 20:546–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. American Diabetes A (2020) 10 cardiovascular disease and risk management: <em>standards of medical care in diabetes—2020. Diabetes Care 43:S111

    Article  Google Scholar 

  3. Booth GL, Kapral MK, Fung K, Tu JV (2006) Relation between age and cardiovascular disease in men and women with diabetes compared with non-diabetic people: a population-based retrospective cohort study. Lancet (London, England) 368:29–36

    Article  PubMed  Google Scholar 

  4. Preis SR, Pencina MJ, Hwang SJ, D’Agostino RB Sr, Savage PJ, Levy D et al (2009) Trends in cardiovascular disease risk factors in individuals with and without diabetes mellitus in the Framingham Heart Study. Circulation 120:212–220

    Article  PubMed  PubMed Central  Google Scholar 

  5. Grundy SM, Benjamin IJ, Burke GL, Chait A, Eckel RH, Howard BV et al (1999) Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation 100:1134–1146

    Article  CAS  PubMed  Google Scholar 

  6. Gu K, Cowie CC, Harris MI (1998) Mortality in adults with and without diabetes in a national cohort of the U.S. population 1971–1993. Diabetes Care 21:1138–1145

    Article  CAS  PubMed  Google Scholar 

  7. Chiang CE, Lin SY, Lin TH, Wang TD, Yeh HI, Chen JF et al (2018) 2018 consensus of the Taiwan society of cardiology and the diabetes association of republic of China (Taiwan) on the pharmacological management of patients with type 2 diabetes and cardiovascular diseases. J Chin Med Ass JCMA 81:189–222

    Article  Google Scholar 

  8. Wolf D, Ley K (2019) Immunity and inflammation in atherosclerosis. Circ Res 124:315–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nezu T, Hosomi N, Aoki S, Matsumoto M (2016) Carotid intima-media thickness for atherosclerosis. J Atheroscler Thromb 23:18–31

    Article  CAS  PubMed  Google Scholar 

  10. Darabian S, Hormuz M, Latif MA, Pahlevan S, Budoff MJ (2013) The role of carotid intimal thickness testing and risk prediction in the development of coronary atherosclerosis. Curr Atheroscler Rep 15:306

    Article  PubMed  PubMed Central  Google Scholar 

  11. O’Leary DH, Polak JF (2002) Intima-media thickness: a tool for atherosclerosis imaging and event prediction. Am J Cardiol 90:18l–21l

    Article  PubMed  Google Scholar 

  12. van der Meer IM, Bots ML, Hofman A, del Sol AI, van der Kuip DA, Witteman JC (2004) Predictive value of noninvasive measures of atherosclerosis for incident myocardial infarction: the Rotterdam Study. Circulation 109:1089–1094

    Article  PubMed  Google Scholar 

  13. Nahmias A, Stahel P, Xiao C, Lewis GF (2020) Glycemia and atherosclerotic cardiovascular disease: exploring the gap between risk marker and risk factor. Front Cardiovasc Med 7:100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang C-P, Lin C-C, Li C-I, Liu C-S, Lin C-H, Hwang K-L et al (2020) Fasting plasma glucose variability and HbA1c are associated with peripheral artery disease risk in type 2 diabetes. Cardiovasc diabetol 19:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mo Y, Zhou J, Ma X, Zhu W, Zhang L, Li J et al (2018) Haemoglobin A1c variability as an independent correlate of atherosclerosis and cardiovascular disease in Chinese type 2 diabetes. Diab Vasc Dis Res 15:402–408

    Article  CAS  PubMed  Google Scholar 

  16. Gorst C, Kwok CS, Aslam S, Buchan I, Kontopantelis E, Myint PK et al (2015) Long-term glycemic variability and risk of adverse outcomes: a systematic review and meta-analysis. Diabetes Care 38:2354–2369

    Article  CAS  PubMed  Google Scholar 

  17. Zhao Q, Zhou F, Zhang Y, Zhou X, Ying C (2019) Fasting plasma glucose variability levels and risk of adverse outcomes among patients with type 2 diabetes: a systematic review and meta-analysis. Diabetes Res Clin Pract 148:23–31

    Article  CAS  PubMed  Google Scholar 

  18. Ceriello A, Esposito K, Piconi L, Ihnat MA, Thorpe JE, Testa R et al (2008) Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients. Diabetes 57:1349–1354

    Article  CAS  PubMed  Google Scholar 

  19. Papachristoforou E, Lambadiari V, Maratou E, Makrilakis K (2020) Association of glycemic indices (hyperglycemia, glucose variability, and hypoglycemia) with oxidative stress and diabetic complications. J Diabetes Res 2020:7489795

    Article  PubMed  PubMed Central  Google Scholar 

  20. Quagliaro L, Piconi L, Assaloni R, Martinelli L, Motz E, Ceriello A (2003) Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells: the role of protein kinase C and NAD(P)H-oxidase activation. Diabetes 52:2795–2804

    Article  CAS  PubMed  Google Scholar 

  21. Valente T, Arbex AK (2021) Glycemic variability, oxidative stress, and impact on complications related to type 2 diabetes mellitus. Curr Diabetes Rev 17:e071620183816

    Article  CAS  PubMed  Google Scholar 

  22. Ghowsi M, Qalekhani F, Farzaei MH, Mahmudii F, Yousofvand N, Joshi T (2021) Inflammation, oxidative stress, insulin resistance, and hypertension as mediators for adverse effects of obesity on the brain: a review. Biomedicine 11:13–22

    Article  PubMed  PubMed Central  Google Scholar 

  23. Keating ST, El-Osta A (2013) Glycemic memories and the epigenetic component of diabetic nephropathy. Curr DiabRep 13:574–581

    CAS  Google Scholar 

  24. Schisano B, Tripathi G, McGee K, McTernan PG, Ceriello A (2011) Glucose oscillations, more than constant high glucose, induce p53 activation and a metabolic memory in human endothelial cells. Diabetologia 54:1219–1226

    Article  CAS  PubMed  Google Scholar 

  25. Gogitidze Joy N, Hedrington MS, Briscoe VJ, Tate DB, Ertl AC, Davis SN (2010) Effects of acute hypoglycemia on inflammatory and pro-atherothrombotic biomarkers in individuals with type 1 diabetes and healthy individuals. Diabetes Care 33:1529–1535

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ratter JM, Rooijackers HM, Tack CJ, Hijmans AG, Netea MG, de Galan BE et al (2017) Proinflammatory effects of hypoglycemia in humans with or without diabetes. Diabetes 66:1052–1061

    Article  CAS  PubMed  Google Scholar 

  27. Sun B, Luo Z, Zhou J (2021) Comprehensive elaboration of glycemic variability in diabetic macrovascular and microvascular complications. Cardiovasc Diabetol 20:9

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chang YT, Lin HC, Chang WN, Tsai NW, Huang CC, Wang HC et al (2017) Impact of inflammation and oxidative stress on carotid intima-media thickness in obstructive sleep apnea patients without metabolic syndrome. J Sleep Res 26:151–158

    Article  PubMed  Google Scholar 

  29. Gomez-Marcos MA, Gomez-Sanchez L, Patino-Alonso MC, Recio-Rodriguez JI, Regalado NG, Ramos R et al (2016) Association between markers of glycemia and carotid intima-media thickness: the MARK study. BMC Cardiovasc Disord 16:203

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lee SW, Kim HC, Lee Y-H, Song BM, Choi H, Park JH et al (2017) Association between HbA1c and carotid atherosclerosis among elderly Koreans with normal fasting glucose. PLoS ONE 12:e0171761

    Article  PubMed  PubMed Central  Google Scholar 

  31. Einarson TR, Hunchuck J, Hemels M (2010) Relationship between blood glucose and carotid intima media thickness: a meta-analysis. Cardiovasc diabetol 9:37

    Article  PubMed  PubMed Central  Google Scholar 

  32. MacKinnon DP (2012) Introduction to statistical mediation analysis. Routledge, London

    Book  Google Scholar 

  33. Walters GD (2018) Applying causal mediation analysis to personality disorder research. Personality disorders 9:12–21

    Article  PubMed  Google Scholar 

  34. Topouchian J, Agnoletti D, Blacher J, Youssef A, Chahine MN, Ibanez I et al (2014) Validation of four devices: omron M6 Comfort, Omron HEM-7420, Withings BP-800, and Polygreen KP-7670 for home blood pressure measurement according to the European society of hypertension international protocol. Vasc Health risk manag 10:33–44

    PubMed  PubMed Central  Google Scholar 

  35. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kilpatrick ES, Rigby AS, Atkin SL (2008) A1C variability and the risk of microvascular complications in type 1 diabetes: data from the diabetes control and complications trial. Diabetes Care 31:2198–2202

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chang C-S, Kuo C-L, Huang C-S, Cheng Y-S, Lin S-S, Liu C-S (2019) Association of cyclophilin a level and pulse pressure in predicting recurrence of cerebral infarction. Kaohsiung J Med Sci. https://doi.org/10.1002/kjm2.12143

    Article  PubMed  Google Scholar 

  38. Wen CP, Cheng TY, Tsai MK, Chang YC, Chan HT, Tsai SP et al (2008) All-cause mortality attributable to chronic kidney disease: a prospective cohort study based on 462 293 adults in Taiwan. Lancet (London, England) 371:2173–2182

    Article  PubMed  Google Scholar 

  39. Baron RM, Kenny DA (1986) The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J Pers Soc Psychol 51:1173–1182

    Article  CAS  PubMed  Google Scholar 

  40. Preacher K, Hayes A (2009) SPSS and SAS macro for bootstrapping specific indirect effects in multiple mediation models. Retrieved

  41. Cao JJ, Arnold AM, Manolio TA, Polak JF, Psaty BM, Hirsch CH et al (2007) Association of carotid artery intima-media thickness, plaques, and C-reactive protein with future cardiovascular disease and all-cause mortality: the Cardiovascular Health Study. Circulation 116:32–38

    Article  PubMed  Google Scholar 

  42. Nambi V, Chambless L, Folsom AR, He M, Hu Y, Mosley T et al (2010) Carotid intima-media thickness and presence or absence of plaque improves prediction of coronary heart disease risk: the ARIC (Atherosclerosis Risk In Communities) study. J Am Coll Cardiol 55:1600–1607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Störk S, Feelders RA, van den Beld AW, Steyerberg EW, Savelkoul HF, Lamberts SW et al (2006) Prediction of mortality risk in the elderly. Am J Med 119:519–525

    Article  PubMed  Google Scholar 

  44. Baldassarre D, Hamsten A, Veglia F, de Faire U, Humphries SE, Smit AJ et al (2012) Measurements of carotid intima-media thickness and of interadventitia common carotid diameter improve prediction of cardiovascular events: results of the IMPROVE (Carotid Intima Media Thickness [IMT] and IMT-Progression as Predictors of Vascular Events in a High Risk European Population) study. J Am Coll Cardiol 60:1489–1499

    Article  PubMed  Google Scholar 

  45. Roumeliotis A, Roumeliotis S, Panagoutsos S, Theodoridis M, Argyriou C, Tavridou A et al (2019) Carotid intima-media thickness is an independent predictor of all-cause mortality and cardiovascular morbidity in patients with diabetes mellitus type 2 and chronic kidney disease. Ren Fail 41:131–138

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hanna DB, Moon JY, Haberlen SA, French AL, Palella FJ Jr, Gange SJ et al (2018) Carotid artery atherosclerosis is associated with mortality in HIV-positive women and men. AIDS (London, England) 32:2393–2403

    Article  PubMed  Google Scholar 

  47. Clemens RK, Annema W, Baumann F, Roth-Zetzsche S, Seifert B, von Eckardstein A et al (2019) Cardiac biomarkers but not measures of vascular atherosclerosis predict mortality in patients with peripheral artery disease. Clin Chim Acta Int J Clin Chem 495:215–220

    Article  CAS  Google Scholar 

  48. Amato M, Montorsi P, Ravani A, Oldani E, Galli S, Ravagnani PM et al (2007) Carotid intima-media thickness by B-mode ultrasound as surrogate of coronary atherosclerosis: correlation with quantitative coronary angiography and coronary intravascular ultrasound findings. Eur Heart J 28:2094–2101

    Article  PubMed  Google Scholar 

  49. Zhang Y, Fang X, Hua Y, Tang Z, Guan S, Wu X et al (2018) Carotid Artery plaques, carotid intima-media thickness, and risk of cardiovascular events and all-cause death in older adults: a 5-year prospective. Commun Based Study Angiol 69:120–129

    Google Scholar 

  50. Yang CW, Guo YC, Li CI, Liu CS, Lin CH, Liu CH et al (2020) Subclinical atherosclerosis markers of carotid intima-media thickness, carotid plaques, carotid stenosis, and mortality in community-dwelling adults. Int J Environ Res Public Health 17:4745

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported primarily by the Ministry of Science and Technology of Taiwan (MOST 109-2314-B-039-031-MY2, MOST 110-2314-B-039-021- & MOST 111-2314-B-039-018-), National Science and Technology Council (NSTC 112-2314-B-039-042-) and China Medical University (CMU111-MF-86).

Author information

Authors and Affiliations

Authors

Contributions

CCL, CIL and TCL were responsible for drafting the article, the conception and design of the study. CIL acquired data and analysed data. CSL, CHL and SSY interpreted data. All authors revised the manuscript and approved the final version. CCL and TCL are responsible for the integrity of the work as a whole.

Corresponding author

Correspondence to Tsai-Chung Li.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethical approval

This study was approved by the Ethical Review Board of China Medical University Hospital (CMUH111-REC1-001).

Informed consent

Informed consent of the study participants was not required because the dataset used in this study consists of de-identifed secondary data released for research purposes.

Additional information

Managed by Antonio Secchi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, CC., Li, CI., Liu, CS. et al. Association of carotid atherosclerosis markers with all-cause and cardiovascular disease–specific mortality in persons with type 2 diabetes: a causal mediation analysis with glucose variation. Acta Diabetol 61, 657–669 (2024). https://doi.org/10.1007/s00592-024-02243-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-024-02243-y

Keywords

Navigation