Abstract
AbstractThe present study examines optical solitons characterized by cubic–quartic dynamics and featuring a self-phase modulation structure encompassing cubic, quintic, septal, and nonic terms. Soliton solutions are obtained through Lie symmetry analysis, followed by integration of the resulting ordinary differential equations using Kudryashov’s auxiliary equation method and a hyperbolic function approach. A comprehensive range of optical soliton solutions has been recovered, alongside the revelation of their criteria for existence.
Publisher
Springer Science and Business Media LLC
Reference62 articles.
1. P.G. Drazin, R.S. Johnson, Solitons (Cambridge University Press, Cambridge), (1989)
2. L. Tang, Optical solitons and traveling wave solutions for the higher-order nonlinear Schrödinger equation with derivative non-Kerr nonlinear terms. Optik 271, 170115 (2022)
3. A. Biswas, D. Milovic, M. Edwards, Mathematical Theory of Dispersion-Managed Optical Solitons (Springer Science & Business Media, Berlin), (2010)
4. L.F. Mollenauer, J.P. Gordon, Solitons in Optical Fibers (Elsevier, Amsterdam), (2006)
5. Y.S. Kivshar, G. Agrawal, Optical Solitons (Academic Press, San Diego), (2003)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献