Prediction of positive pulmonary nodules based on machine learning algorithm combined with central carbon metabolism data

Author:

Liu Jian-jun,Shen Wen-bin,Qin Qi-rong,Li Jian-wei,Li Xue,Liu Meng-yu,Hu Wen-lei,Wu Yue-yang,Huang FenORCID

Abstract

Abstract Background Lung cancer causes a huge disease burden, and early detection of positive pulmonary nodules (PPNs) as an early sign of lung cancer is extremely important for effective intervention. It is necessary to develop PPNs risk recognizer based on machine learning algorithm combined with central carbon metabolomics. Methods The study included 2248 participants at high risk for lung cancer from the Ma'anshan Community Lung Cancer Screening cohort. The Least Absolute Shrinkage and Selection Operator (LASSO) was used to screen 18 central carbon-related metabolites in plasma, recursive feature elimination (RFE) was used to select all 42 features, followed by five machine learning algorithms for model development. The performance of the model was evaluated using area under the receiver operator characteristic curve (AUC), accuracy, precision, recall, and F1 scores. In addition, SHapley Additive exPlanations (SHAP) was performed to assess the interpretability of the final selected model and to gain insight into the impact of features on the predicted results. Results Finally, the two prediction models based on the random forest (RF) algorithm performed best, with AUC values of 0.87 and 0.83, respectively, better than other models. We found that homogentisic acid, fumaric acid, maleic acid, hippuric acid, gluconic acid, and succinic acid played a significant role in both PPNs prediction model and NPNs vs PPNs model, while 2-oxadipic acid only played a role in the former model and phosphopyruvate only played a role in the NPNs vs PPNs model. This model demonstrates the potential of central carbon metabolism for PPNs risk prediction and identification. Conclusion We developed a series of predictive models for PPNs, which can help in the early detection of PPNs and thus reduce the risk of lung cancer.

Funder

Health Commission of Anhui Province

Science and Technology Department of Anhui Province

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3