Development and validation of a predictive model in diagnosis and prognosis of primary glioblastoma patients based on Homeobox A family

Author:

Zheng Zong-Qing,Yuan Gui-Qiang,Zhang Guo-Guo,Nie Qian-Qian,Wang Zhong

Abstract

Abstract Background Homeobox A (HOXA) family is involved in the development of malignancies as either tumor suppressors or oncogenes. However, their roles in glioblastoma (GBM) and clinical significance have not been fully elucidated. Methods HOXA mutation and expressions in pan-cancers were investigated using GSCA and Oncomine, which in GBM were validated by cBioPortal, Chinese Glioma Genome Atlas (CGGA), and The Cancer Genome Atlas (TCGA) datasets. Kaplan–Meier analyses were conducted to determine prognostic values of HOXAs at genetic and mRNA levels. Diagnostic roles of HOXAs in tumor classification were explored by GlioVis and R software. Independent prognostic HOXAs were identified using Cox survival analyses, the least absolute shrinkage and selection operator (LASSO) regression, quantitative real-time PCR, and immunohistochemical staining. A HOXAs-based nomogram survival prediction model was developed and evaluated using Kaplan–Meier analysis, time-dependent Area Under Curve, calibration plots, and Decision Curve Analysis in training and validation cohorts. Results HOXAs were highly mutated and overexpressed in pan-cancers, especially in CGGA and TCGA GBM datasets. Genetic alteration and mRNA expression of HOXAs were both found to be prognostic. Specific HOXAs could distinguish IDH mutation (HOXA1-7, HOXA9, HOXA13) and molecular GBM subtypes (HOXA1-2, HOXA9-11, HOXA13). HOXA1/2/3/10 were confirmed to be independent prognostic members, with high expressions validated in clinical GBM tissues. The HOXAs-based nomogram model exhibited good prediction performance and net benefits for patients in training and validation cohorts. Conclusion HOXA family has diagnostic values, and the HOXAs-based nomogram model is effective in survival prediction, providing a novel approach to support the treatment of GBM patients.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Endocrine and Autonomic Systems,Endocrinology,Oncology,Endocrinology, Diabetes and Metabolism

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3