Machine learning and experiments identifies SPINK1 as a candidate diagnostic and prognostic biomarker for hepatocellular carcinoma

Author:

Yi Shiming,Zhang Chunlei,Li Ming,Qu Tianyi,Wang Jiafeng

Abstract

AbstractMachine learning techniques have been widely used in predicting disease prognosis, including cancer prognosis. One of the major challenges in cancer prognosis is to accurately classify cancer types and stages to optimize early screening and detection, and machine learning techniques have proven to be very useful in this regard. In this study, we aimed at identifying critical genes for diagnosis and outcomes of hepatocellular carcinoma (HCC) patients using machine learning. The HCC expression dataset was downloaded from GSE65372 datasets and TCGA datasets. Differentially expressed genes (DEGs) were identified between 39 HCC and 15 normal samples. For the purpose of locating potential biomarkers, the LASSO and the SVM-RFE assays were performed. The ssGSEA method was used to analyze the TCGA to determine whether there was an association between SPINK1 and tumor immune infiltrates. RT-PCR was applied to examine the expression of SPINK1 in HCC specimens and cells. A series of functional assays were applied to examine the function of SPINK1 knockdown on the proliferation of HCC cells. In this study, 103 DEGs were obtained. Based on LASSO and SVM-RFE analysis, we identified nine critical diagnostic genes, including C10orf113, SPINK1, CNTLN, NRG3, HIST1H2AI, GPRIN3, SCTR, C2orf40 and PITX1. Importantly, we confirmed SPINK1 as a prognostic gene in HCC. Multivariate analysis confirmed that SPINK1 was an independent prognostic factor for overall survivals of HCC patients. We also found that SPINK1 level was positively associated with Macrophages, B cells, TFH, T cells, Th2 cells, iDC, NK CD56bright cells, Th1 cells, aDC, while negatively associated with Tcm and Eosinophils. Finally, we demonstrated that SPINK1 expression was distinctly increased in HCC specimens and cells. Functionally, silence of SPINK1 distinctly suppressed the proliferation of HCC cells via regulating Wnt/β-catenin pathway. The evidence provided suggested that SPINK1 may possess oncogenic properties by inducing dysregulated immune infiltration in HCC. Additionally, SPINK1 was identified as a novel biomarker and therapeutic target for HCC.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Endocrine and Autonomic Systems,Endocrinology,Oncology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3