Development and validation of a radiomics nomogram for diagnosis of malignant pleural effusion

Author:

Wei Mingzhu,Zhang Yaping,Zhao Li,Zhao Zhenhua

Abstract

Abstract Objective We aimed to develop a radiomics nomogram based on computed tomography (CT) scan features and high-throughput radiomics features for diagnosis of malignant pleural effusion (MPE). Methods In this study, 507 eligible patients with PE (207 malignant and 300 benign) were collected retrospectively. Patients were divided into training (n = 355) and validation cohorts (n = 152). Radiomics features were extracted from initial unenhanced CT images. CT scan features of PE were also collected. We used the variance threshold algorithm and least absolute shrinkage and selection operator (LASSO) to select optimal features to build a radiomics model for predicting the nature of PE. Univariate and multivariable logistic regression analyzes were used to identify significant independent factors associated with MPE, which were then included in the radiomics nomogram. Results A total of four CT features were retained as significant independent factors, including massive PE, obstructive atelectasis or pneumonia, pleural thickening > 10 mm, and pulmonary nodules and/or masses. The radiomics nomogram constructed from 13 radiomics parameters and four CT features showed good predictive efficacy in training cohort [area under the curve (AUC) = 0.926, 95% CI 0.894, 0.951] and validation cohort (AUC = 0.916, 95% CI 0.860, 0.955). The calibration curve and decision curve analysis showed that the nomogram helped differentiate MPE from benign pleural effusion (BPE) in clinical practice. Conclusion This study presents a nomogram model incorporating CT scan features and radiomics features to help physicians differentiate MPE from BPE.

Funder

the Key Laboratory of Functional Molecular Imaging of Tumor (Shaoxing People’s Hospital, Shaoxing, Zhejiang, China), Public Welfare Technology Application Research Program in Zhejiang Province

Medical and Health Research Project of Zhejiang Province

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Endocrine and Autonomic Systems,Endocrinology,Oncology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3