FICOM: an effective and scalable active learning framework for GNNs on semi-supervised node classification

Author:

Zhang Xingyi,Huang Jinchao,Zhang Fangyuan,Wang Sibo

Abstract

AbstractActive learning for graph neural networks (GNNs) aims to select B nodes to label for the best possible GNN performance. Carefully selected labeled nodes can help improve GNN performance and hence motivates a line of research works. Unfortunately, existing methods still provide inferior GNN performance or cannot scale to large networks.Motivated by these limitations, in this paper, we present FICOM, an effective and scalable GNN active learning framework. Firstly, we formulate the node selection as an optimization problem where we consider the importance of a node from (i) the importance of a node during the feature propagation with a connection to the personalized PageRank (PPR), and (ii) the diversity of a node brings in the embedding space generated by feature propagation. We show that the defined problem is submodular, and a greedy solution can provide a $$(1-1/e)$$ ( 1 - 1 / e ) -approximate solution.However, a standard greedy solution requires getting the node with the maximum marginal gain of the objective score in each iteration, which incurs a prohibitive running cost and cannot scale to large datasets. As our main contribution, we present FICOM, an efficient and scalable solution that provides $$(1-1/e)$$ ( 1 - 1 / e ) -approximation guarantee and scales to graphs with millions of nodes on a single machine. The main idea is that we adaptively maintain the lower- and upper-bound of the marginal gain for each node v. In each iteration, we can first derive a small subset of candidate nodes and then compute the exact score for this subset of candidate nodes so that we can find the node with the maximum marginal gain efficiently. Extensive experiments on six benchmark datasets using four GNNs, including GCN, SGC, APPNP, and GCNII, show that our FICOM consistently outperforms existing active learning approaches on semi-supervised node classification tasks using different GNNs. Moreover, our solution can finish within 5 h on a million-node graph.

Publisher

Springer Science and Business Media LLC

Reference57 articles.

1. Bhatia, K., Dahiya, K., Jain, H., Kar, P., Mittal, A., Prabhu, Y., Varma, M.: The extreme classification repository: Multi-label datasets and code (2016) http://manikvarma.org/downloads/XC/XMLRepository.html

2. Bojchevski, A., Klicpera, J., Perozzi, B., Kapoor, A., Blais, M., Rózemberczki, B., Lukasik, M., Günnemann, S.: Scaling graph neural networks with approximate pagerank. In: SIGKDD, pp. 2464–2473 (2020)

3. Brinker, K.: Incorporating diversity in active learning with support vector machines. In: ICML, pp. 59–66 (2003)

4. Cai, H., Zheng, V.W., Chang, K.C.C.: Active learning for graph embedding. CoRRabs/1705.05085 (2017)

5. Chen, M., Wei, Z., Huang, Z., Ding, B., Li, Y.: Simple and deep graph convolutional networks. In: ICML, pp. 1725–1735 (2020)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3