Skip to main content

Advertisement

Log in

Automated detection of nine infantile fundus diseases and conditions in retinal images using a deep learning system

  • Research
  • Published:
EPMA Journal Aims and scope Submit manuscript

Abstract

Purpose

We developed an Infant Retinal Intelligent Diagnosis System (IRIDS), an automated system to aid early diagnosis and monitoring of infantile fundus diseases and health conditions to satisfy urgent needs of ophthalmologists.

Methods

We developed IRIDS by combining convolutional neural networks and transformer structures, using a dataset of 7697 retinal images (1089 infants) from four hospitals. It identifies nine fundus diseases and conditions, namely, retinopathy of prematurity (ROP) (mild ROP, moderate ROP, and severe ROP), retinoblastoma (RB), retinitis pigmentosa (RP), Coats disease, coloboma of the choroid, congenital retinal fold (CRF), and normal. IRIDS also includes depth attention modules, ResNet-18 (Res-18), and Multi-Axis Vision Transformer (MaxViT). Performance was compared to that of ophthalmologists using 450 retinal images. The IRIDS employed a five-fold cross-validation approach to generate the classification results.

Results

Several baseline models achieved the following metrics: accuracy, precision, recall, F1-score (F1), kappa, and area under the receiver operating characteristic curve (AUC) with best values of 94.62% (95% CI, 94.34%-94.90%), 94.07% (95% CI, 93.32%-94.82%), 90.56% (95% CI, 88.64%-92.48%), 92.34% (95% CI, 91.87%-92.81%), 91.15% (95% CI, 90.37%-91.93%), and 99.08% (95% CI, 99.07%-99.09%), respectively. In comparison, IRIDS showed promising results compared to ophthalmologists, demonstrating an average accuracy, precision, recall, F1, kappa, and AUC of 96.45% (95% CI, 96.37%-96.53%), 95.86% (95% CI, 94.56%-97.16%), 94.37% (95% CI, 93.95%-94.79%), 95.03% (95% CI, 94.45%-95.61%), 94.43% (95% CI, 93.96%-94.90%), and 99.51% (95% CI, 99.51%-99.51%), respectively, in multi-label classification on the test dataset, utilizing the Res-18 and MaxViT models. These results suggest that, particularly in terms of AUC, IRIDS achieved performance that warrants further investigation for the detection of retinal abnormalities.

Conclusions

IRIDS identifies nine infantile fundus diseases and conditions accurately. It may aid non-ophthalmologist personnel in underserved areas in infantile fundus disease screening. Thus, preventing severe complications. The IRIDS serves as an example of artificial intelligence integration into ophthalmology to achieve better outcomes in predictive, preventive, and personalized medicine (PPPM / 3PM) in the treatment of infantile fundus diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

These authors do not have permission to share data except the first author.

Code availability

The source code used in this study is available upon request from the first author only.

Abbreviations

AI:

Artificial intelligence

AUC:

Area under the receiver operating characteristic curve

CNNs:

Convolutional neural networks

CRF:

Congenital retinal fold

DA:

Depth attention

DL:

Deep Learning

EPMA:

European Association for Predictive, Preventive and Personalized Medicine

eps:

Epsilon

F1:

F1 score

IRIDS:

Infant Retinal Intelligent Diagnosis System

Max ViT:

Multi-Axis Vision Transformer

PPPM/3PM:

Predictive, preventive, and personalized medicine

RB:

Retinoblastoma

ROC:

Receiver operating characteristic

ROP:

Retinopathy of prematurity

RP:

Retinitis pigmentosa

Res-18:

ResNet-18

SGD:

Stochastic gradient descent

T-SNE:

T-distributed stochastic neighbor embedding

References

  1. Chiang MF, Quinn GE, Fielder AR, Ostmo SR, Paul Chan RV, Berrocal A, et al. International Classification of Retinopathy of Prematurity, Third Edition. Ophthalmology. 2021;128(10):e51–68. https://doi.org/10.1016/j.ophtha.2021.05.031.

    Article  PubMed  Google Scholar 

  2. Shields JA, Shields CL, Honavar SG, Demirci H. Clinical variations and complications of Coats disease in 150 cases: the 2000 Sanford Gifford Memorial Lecture. Am J Ophthalmol. 2001;131(5):561–71. https://doi.org/10.1016/s0002-9394(00)00883-7.

    Article  CAS  PubMed  Google Scholar 

  3. Spitznas M, Joussen F, Wessing A, Meyer-Schwickerath G. Coat’s disease. An epidemiologic and Fluorescein angiographic study. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1975;195(4):241–50. https://doi.org/10.1007/BF00414937.

    Article  CAS  PubMed  Google Scholar 

  4. Rao R, Honavar SG. Retinoblastoma. Indian J Pediatr. 2017;84(12):937–44. https://doi.org/10.1007/s12098-017-2395-0.

    Article  PubMed  Google Scholar 

  5. Pagon RA. Retinitis pigmentosa. Surv Ophthalmol. 1988;33(3):137–77. https://doi.org/10.1016/0039-6257(88)90085-9.

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  6. Giles K, Raoul C, Yannick B, Peter W. Uveal coloboma: about 3 cases at the University Teaching Hospital, Yaounde, Cameroon. Pan Afr Med J. 2016;24:201. https://doi.org/10.11604/pamj.2016.24.201.9770.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nishina S, Suzuki Y, Yokoi T, Kobayashi Y, Noda E, Azuma N. Clinical features of congenital retinal folds. Am J Ophthalmol. 2012;153(1):81-7 e1. https://doi.org/10.1016/j.ajo.2011.06.002.

    Article  PubMed  Google Scholar 

  8. Liche F, Majji AB. Familial exudative vitreoretinopathy. Ophthalmology. 2012;119(5):1093. https://doi.org/10.1016/j.ophtha.2012.02.025.

    Article  PubMed  Google Scholar 

  9. Fielder A, Blencowe H, O’Connor A, Gilbert C. Impact of retinopathy of prematurity on ocular structures and visual functions. Arch Dis Child Fetal Neonatal Ed. 2015;100(2):F179–84. https://doi.org/10.1136/archdischild-2014-306207.

    Article  PubMed  Google Scholar 

  10. Golubnitschaja O, Costigliola V, Epma. General report & recommendations in predictive, preventive and personalised medicine 2012: white paper of the European Association for Predictive, Preventive and Personalised Medicine. EPMA J. 2012;3(1):14. https://doi.org/10.1186/1878-5085-3-14.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Good WV. Retinopathy of Prematurity Incidence in Children. Ophthalmology. 2020;127(4S):S82–3. https://doi.org/10.1016/j.ophtha.2019.11.026.

    Article  PubMed  Google Scholar 

  12. Dimaras H, Corson TW, Cobrinik D, White A, Zhao J, Munier FL, et al. Retinoblastoma. Nat Rev Dis Primers. 2015;1:15021. https://doi.org/10.1038/nrdp.2015.21.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Global Retinoblastoma Study G, Fabian ID, Abdallah E, Abdullahi SU, Abdulqader RA, Adamou Boubacar S, et al. Global Retinoblastoma Presentation and Analysis by National Income Level. JAMA Oncol. 2020;6(5):685–95. https://doi.org/10.1001/jamaoncol.2019.6716.

    Article  Google Scholar 

  14. Chen HY, Lehmann OJ, Swaroop A. Genetics and therapy for pediatric eye diseases. EBioMedicine. 2021;67:103360. https://doi.org/10.1016/j.ebiom.2021.103360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Coleman K, Coleman J, Franco-Penya H, Hamroush F, Murtagh P, Fitzpatrick P, et al. A New Smartphone-Based Optic Nerve Head Biometric for Verification and Change Detection. Transl Vis Sci Technol. 2021;10(8):1. https://doi.org/10.1167/tvst.10.8.1.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Golubnitschaja O, Potuznik P, Polivka J Jr, Pesta M, Kaverina O, Pieper CC, et al. Ischemic stroke of unclear aetiology: a case-by-case analysis and call for a multi-professional predictive, preventive and personalised approach. EPMA J. 2022;13(4):535–45. https://doi.org/10.1007/s13167-022-00307-z.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44–56. https://doi.org/10.1038/s41591-018-0300-7.

    Article  CAS  PubMed  Google Scholar 

  18. Baek SU, Lee WJ, Park KH, Choi HJ. Health screening program revealed risk factors associated with development and progression of papillomacular bundle defect. EPMA J. 2021;12(1):41–55. https://doi.org/10.1007/s13167-021-00235-4.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Li S, Li M, Wu J, Li Y, Han J, Cao W, et al. Development and validation of a routine blood parameters-based model for screening the occurrence of retinal detachment in high myopia in the context of PPPM. EPMA J. 2023;14(2):219–33. https://doi.org/10.1007/s13167-023-00319-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. 1999;286(5439):531–7. https://doi.org/10.1126/science.286.5439.531.

    Article  CAS  PubMed  Google Scholar 

  21. Wang Y, Tetko IV, Hall MA, Frank E, Facius A, Mayer KF, et al. Gene selection from microarray data for cancer classification–a machine learning approach. Comput Biol Chem. 2005;29(1):37–46. https://doi.org/10.1016/j.compbiolchem.2004.11.001.

    Article  CAS  PubMed  Google Scholar 

  22. Yu KH, Levine DA, Zhang H, Chan DW, Zhang Z, Snyder M. Predicting Ovarian Cancer Patients’ Clinical Response to Platinum-Based Chemotherapy by Their Tumor Proteomic Signatures. J Proteome Res. 2016;15(8):2455–65. https://doi.org/10.1021/acs.jproteome.5b01129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yu KH, Fitzpatrick MR, Pappas L, Chan W, Kung J, Snyder M. Omics AnalySIs System for PRecision Oncology (OASISPRO): a web-based omics analysis tool for clinical phenotype prediction. Bioinformatics. 2018;34(2):319–20. https://doi.org/10.1093/bioinformatics/btx572.

    Article  CAS  PubMed  Google Scholar 

  24. Check Hayden E. The automated lab. Nature. 2014;516(7529):131–2. https://doi.org/10.1038/516131a.

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Chew EY. Age-related Macular Degeneration: Nutrition, Genes and Deep Learning-The LXXVI Edward Jackson Memorial Lecture. Am J Ophthalmol. 2020;217:335–47. https://doi.org/10.1016/j.ajo.2020.05.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shon K, Sung KR, Shin JW. Can Artificial Intelligence Predict Glaucomatous Visual Field Progression? A Spatial-Ordinal Convolutional Neural Network Model. Am J Ophthalmol. 2022;233:124–34. https://doi.org/10.1016/j.ajo.2021.06.025.

    Article  PubMed  Google Scholar 

  27. Ee CL, Samsudin A. Comparison of Smartphone-Based and Automated Refraction with Subjective Refraction for Screening of Refractive Errors. Ophthalmic Epidemiol. 2022;29(5):588–94. https://doi.org/10.1080/09286586.2021.1986550.

    Article  PubMed  Google Scholar 

  28. Dai L, Wu L, Li H, Cai C, Wu Q, Kong H, et al. A deep learning system for detecting diabetic retinopathy across the disease spectrum. Nat Commun. 2021;12(1):3242. https://doi.org/10.1038/s41467-021-23458-5.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Panwar N, Huang P, Lee J, Keane PA, Chuan TS, Richhariya A, et al. Fundus Photography in the 21st Century–A Review of Recent Technological Advances and Their Implications for Worldwide Healthcare. Telemed J E Health. 2016;22(3):198–208. https://doi.org/10.1089/tmj.2015.0068.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhao J, Lei B, Wu Z, Zhang Y, Li Y, Wang L, et al. A Deep Learning Framework for Identifying Zone I in RetCam Images. IEEE Access. 2019;7:103530–7. https://doi.org/10.1109/access.2019.2930120.

    Article  Google Scholar 

  31. Zhang Y, Wang L, Wu Z, Zeng J, Chen Y, Tian R, et al. Development of an Automated Screening System for Retinopathy of Prematurity Using a Deep Neural Network for Wide-Angle Retinal Images. IEEE Access. 2019;7:10232–41. https://doi.org/10.1109/access.2018.2881042.

    Article  Google Scholar 

  32. Rugang Zhang JZ. Hai Xie, Tianfu Wang, Automatic diagnosis for aggressive posterior retinopathy of prematurity via deep attentive convolutional neural network. Expert Syst Appl. 2022;187:115843.

    Article  Google Scholar 

  33. Maji D, Sekh AA. Automatic grading of retinal blood vessel in deep retinal image diagnosis. J Med Syst. 2020;44(180). https://doi.org/10.1007/s10916-020-01635-1.

  34. Xie HLH, Zeng X, He Y, Chen G. AMD-GAN: attention encoder and multi-branch structure based generative adversarial networks for fundus disease detection from scanning laser ophthalmoscopy images. Neural Netw. 2020;132:477–90.

    Article  PubMed  Google Scholar 

  35. Dong L, He W, Zhang R, Ge Z, Wang YX, Zhou J, et al. Artificial Intelligence for Screening of Multiple Retinal and Optic Nerve Diseases. JAMA Netw Open. 2022;5(5):e229960. https://doi.org/10.1001/jamanetworkopen.2022.9960.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cen LP, Ji J, Lin JW, Ju ST, Lin HJ, Li TP, et al. Automatic detection of 39 fundus diseases and conditions in retinal photographs using deep neural networks. Nat Commun. 2021;12(1):4828. https://doi.org/10.1038/s41467-021-25138-w.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Patel TP, Kim TN, Yu G, Dedania VS, Lieu P, Qian CX, et al. Smartphone-Based, Rapid, Wide-Field Fundus Photography for Diagnosis of Pediatric Retinal Diseases. Transl Vis Sci Technol. 2019;8(3):29. https://doi.org/10.1167/tvst.8.3.29.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Golubnitschaja O, Baban B, Boniolo G, Wang W, Bubnov R, Kapalla M, et al. Medicine in the early twenty-first century: paradigm and anticipation - EPMA position paper 2016. EPMA J. 2016;7(1):23. https://doi.org/10.1186/s13167-016-0072-4.

    Article  PubMed  PubMed Central  Google Scholar 

  39. World Medical A. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191–4. https://doi.org/10.1001/jama.2013.281053.

    Article  CAS  Google Scholar 

  40. Reynolds JD and Olitsky SE, pediatric retina. 1st ed. Heidelberg: Springer-Verlag Berlin. 2010. https://doi.org/10.1007/978-3-642-12041-11.

  41. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2016;770–778. https://doi.org/10.48550/arXiv.1512.03385.

  42. Tu Z, Talebi H, Zhang H, Yang F, Peyman Milanfar, Alan Bovik, et al. Maxvit: Multi-axis vision transformer. arXiv preprint arXiv. 2022: p. 01697. https://doi.org/10.48550/arXiv.2204.01697.

  43. Chen C, Rameswar P, Fan Q. Regionvit: Regional-to-local attention for vision transformers. arXiv preprint arXiv. 2022. https://doi.org/10.48550/arXiv.2106.02689.

  44. Lee SH, Lee S, Song BC. Vision transformer for small-size datasets. arXiv preprint arXiv. 2021. https://doi.org/10.48550/arXiv.2112.13492.

  45. Yu S, Ma K, Bi Q, Bian C. Mil-vt: Multiple instance learning enhanced vision transformer for fundus image classification[C]//Medical Image Computing and Computer Assisted Intervention-MICCAI 2021: 24th International Conference, Strasbourg, France, September 27-October 1, 2021, Proceedings, Part VIII 24. Springer International Publishing. 2021: p. 45-54. https://doi.org/10.1007/978-3-030-87237-3_5.

  46. Sun R, Li Y, Zhang T, Mao Z, Wu F. Lesion-aware transformers for diabetic retinopathy grading[C]. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: p. 10938–10947. https://doi.org/10.1109/CVPR46437.2021.01079.

  47. Playout C, Duval R, Boucher MC, Cheriet F. Focused Attention in Transformers for interpretable classification of retinal images. Med Image Anal. 2022;82:102608. https://doi.org/10.1016/j.media.2022.102608.

    Article  PubMed  Google Scholar 

  48. Wong TY, Bressler NM. Artificial Intelligence With Deep Learning Technology Looks Into Diabetic Retinopathy Screening. JAMA. 2016;316(22):2366–7. https://doi.org/10.1001/jama.2016.17563.

    Article  PubMed  Google Scholar 

  49. Ng WY, Zhang S, Wang Z, Ong CJT, Gunasekeran DV, Lim GYS, Ting DSW. Updates in deep learning research in ophthalmology. Clin Sci. 2021;135(20):2357–76.

    Article  Google Scholar 

  50. Huang YPBH, Kang EYC, Chen KJ, Hwang YS, Lai CC, Wu WC. Automated detection of early-stage ROP using a deep convolutional neural network. Br J Ophthalmol. 2021;105(8):1099–103.

    Article  PubMed  Google Scholar 

  51. Durai C, Jebaseeli TJ, Alelyani S, Mubharakali A. Early Prediction and Diagnosis of Retinoblastoma Using Deep Learning Techniques. arXiv preprint arXiv. 2021. https://doi.org/10.48550/arXiv.2103.07622.

  52. Stevenson CH, Hong SC, Ogbuehi KC. Development of an artificial intelligence system to classify pathology and clinical features on retinal fundus images. Clin Exp Ophthalmol. 2019;47(4):484–9. https://doi.org/10.1111/ceo.13433.

    Article  PubMed  Google Scholar 

  53. Son J, Shin JY, Kim HD, Jung KH, Park KH, Park SJ. Development and Validation of Deep Learning Models for Screening Multiple Abnormal Findings in Retinal Fundus Images. Ophthalmology. 2020;127(1):85–94. https://doi.org/10.1016/j.ophtha.2019.05.029.

    Article  PubMed  Google Scholar 

  54. Lin D, Xiong J, Liu C, Zhao L, Li Z, Yu S, et al. Application of Comprehensive Artificial intelligence Retinal Expert (CARE) system: a national real-world evidence study. Lancet Digit Health. 2021;3(8):e486–95. https://doi.org/10.1016/S2589-7500(21)00086-8.

    Article  CAS  PubMed  Google Scholar 

  55. Cen L-P, Ji J, Lin J-W, Ju S-T, Lin H-J, Li T-P, et al. Automatic detection of 39 fundus diseases and conditions in retinal photographs using deep neural networks. Nat Commun. 2021;12(1). https://doi.org/10.1038/s41467-021-25138-w.

  56. Ju L, Yu Z, Wang L, Zhao X, Wang X, Bonnington P, et al. Hierarchical Knowledge Guided Learning for Real-world Retinal Disease Recognition. IEEE Trans Med Imaging. 2023;PP. https://doi.org/10.1109/TMI.2023.3302473.

  57. Gu C, Wang Y, Jiang Y, Xu F, Wang S, Liu R, et al. Application of artificial intelligence system for screening multiple fundus diseases in Chinese primary healthcare settings: a real-world, multicentre and cross-sectional study of 4795 cases. Br J Ophthalmol. 2023. https://doi.org/10.1136/bjo-2022-322940.

    Article  PubMed  Google Scholar 

  58. Zhu H, Cheng C, Yin H, Li X, Zuo P, Ding J, et al. Automatic multilabel electrocardiogram diagnosis of heart rhythm or conduction abnormalities with deep learning: a cohort study. Lancet Digit Health. 2020;2(7):e348–57. https://doi.org/10.1016/S2589-7500(20)30107-2.

    Article  PubMed  Google Scholar 

  59. Golubnitschaja O, Topolcan O, Kucera R, Costigliola V, Epma. 10th Anniversary of the European Association for Predictive, Preventive and Personalised (3P) Medicine - EPMA World Congress Supplement 2020. EPMA J. 2020;11(Suppl 1):1–133. https://doi.org/10.1007/s13167-020-00206-1.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by National Natural Science Foundation of China (No. 82271103, 82301269, 82301226, 62376164, 62106153, U22A2024), Sanming Project of Medicine in Shenzhen (No. SZSM202311018), Guangdong Basic and Applied Basic Research Foundation (No. 2022A1515012326, 22201910240002529), Shenzhen Medical Research Fund (No. C2301005), Shenzhen Key Medical Discipline Construction Fund (No. SZXK038), Shenzhen Fund for Guangdong Provincial High Level Clinical Key Specialties (No. SZGSP014), Shenzhen Science and Technology R&D Fund Project (No. JCYJ20220530153607015), China Ophthalmology New Technology Incubation Project.

Author information

Authors and Affiliations

Authors

Contributions

GZ has full access to all data in the study and is responsible for the integrity of the data and the accuracy of the data analysis. YL, HX, and XZ contributed equally and are considered co-first authors. Concept and design: YL, HX, and XZ. Acquisition, analysis, or interpretation of data: YL, HX, XZ, and SZ. Drafting of the manuscript: YL and HX. Critical revision of the manuscript for important intellectual content: GZ, JT, XZ, and DPN. Statistical analysis: YL and JT. Obtained funding: GZ. Administrative, technical, or material support: ZY, ZW, RT, YC, MC, YD, TC, YH, and BL. Supervision: GZ.

Corresponding authors

Correspondence to Sifan Zhang, Baiying Lei or Guoming Zhang.

Ethics declarations

Conflicts interests

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

This diagnostic study was approved by the Ethics Committee of Shenzhen Eye Hospital. All institutions abided by the tenets of the Declaration of Helsinki.

Consent to participate

Written informed consent was obtained from the parents of all enrolled infants.

Consent for publication

This article has been approved for publication by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 160008 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Xie, H., Zhao, X. et al. Automated detection of nine infantile fundus diseases and conditions in retinal images using a deep learning system. EPMA Journal 15, 39–51 (2024). https://doi.org/10.1007/s13167-024-00350-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13167-024-00350-y

Keywords

Navigation