Exact four-point function and OPE for an interacting quantum field theory with space/time anisotropic scale invariance

Author:

Shimada HidehikoORCID,Shimada Hirohiko

Abstract

Abstract We identify a nontrivial yet tractable quantum field theory model with space/time anisotropic scale invariance, for which one can exactly compute certain four-point correlation functions and their decompositions via the operator-product expansion(OPE). The model is the Calogero model, non-relativistic particles interacting with a pair potential $$ \frac{g}{{\left|x-y\right|}^2} $$ g x y 2 in one dimension, considered as a quantum field theory in one space and one time dimension via the second quantisation. This model has the anisotropic scale symmetry with the anisotropy exponent z = 2. The symmetry is also enhanced to the Schrödinger symmetry. The model has one coupling constant g and thus provides an example of a fixed line in the renormalisation group flow of anisotropic theories.We exactly compute a nontrivial four-point function of the fundamental fields of the theory. We decompose the four-point function via OPE in two different ways, thereby explicitly verifying the associativity of OPE for the first time for an interacting quantum field theory with anisotropic scale invariance. From the decompositions, one can read off the OPE coefficients and the scaling dimensions of the operators appearing in the intermediate channels. One of the decompositions is given by a convergent series, and only one primary operator and its descendants appear in the OPE. The scaling dimension of the primary operator we computed depends on the coupling constant. The dimension correctly reproduces the value expected from the well-known spectrum of the Calogero model combined with the so-called state-operator map which is valid for theories with the Schrödinger symmetry. The other decomposition is given by an asymptotic series. The asymptotic series comes with exponentially small correction terms, which also have a natural interpretation in terms of OPE.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3