Multibody dynamics analysis of the human upper body for rotorcraft–pilot interaction

Author:

Zanoni AndreaORCID,Cocco Alessandro,Masarati Pierangelo

Abstract

AbstractThe study of the biodynamic response of helicopter passengers and pilots, when excited by rotorcraft vibrations that are transmitted through the seat and, for the latter, the control inceptors, is of great importance in different areas of aircraft design. Handling qualities are affected by the proneness of the aircraft to give rise to adverse interactions, an unwanted quality that can be captured by the so-called biodynamic feedthrough. On the other hand, the transmissibility of vibrations, especially from the seat to the head, affects the comfort of pilots and passengers during flight. Detailed and parametrised multibody modelling of the human upper body can provide a strong base to support design decisions justified by a first-principles approach. In this work, a multibody model of the upper body is formed by connecting a previously developed detailed model of the arms to a similarly detailed model of the spine. The whole model can be adapted to a specific subject, identified by age, gender, weight and height. The spine model and the scaling procedure have been validated using the experimental results for seat to head transmissibility. The coupled spine-arms model is used to evaluate the biodynamic response in terms of involuntary motion induced on the control inceptors, including the related nonlinearities.

Funder

Politecnico di Milano

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Control and Systems Engineering

Reference57 articles.

1. Abbas, W.: Optimization of biodynamic seated human models using genetic algorithms. Engineering 02, 710–719 (2010). https://doi.org/10.4236/eng.2010.29092

2. Allen, B., Curless, B., Popović, Z.: The space of human body shapes: reconstruction and parameterization from range scans. In: ACM Transactions on Graphics (TOG), vol. 22, pp. 587–594. ACM (2003)

3. Bai, X.X., Xu, S.X., Cheng, W., Qian, L.J.: On 4-degree-of-freedom biodynamic models of seated occupants: lumped-parameter modeling. J. Sound Vib. 402, 122–141 (2017)

4. Belytschko, T., Privitzer, E.: Refinement and validation of a three-dimensional head-spine model. Technical report. Illinois University at Chicago Circle Department of Materials Engineering (1978)

5. Belytschko, T., Schwer, L., Schultz, A.: A model for analytic investigation of three-dimensional head-spine dynamics. Technical report. Illinois University at Chicago Circle Department of Materials engineering (1976)

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3