Abstract
AbstractMany protein families have numerous members listed in databases as allergens; however, some allergen database entries, herein called “orphan allergens”, are members of large families of which all other members are not allergens. These orphan allergens provide an opportunity to assess whether specific structural features render a protein allergenic. Three orphan allergens [Cladosporium herbarum aldehyde dehydrogenase (ChALDH), Alternaria alternata ALDH (AaALDH), and C. herbarum mannitol dehydrogenase (ChMDH)] were recombinantly produced and purified for structure characterization and for clinical skin prick testing (SPT) in mold allergic participants. Examination of the X-ray crystal structures of ChALDH and ChMDH and a homology structure model of AaALDH did not identify any discernable epitopes that distinguish these putative orphan allergens from their non-allergenic protein relatives. SPT results were aligned with ChMDH being an allergen, 53% of the participants were SPT (+). AaALDH did not elicit SPT reactivity above control proteins not in allergen databases (i.e., Psedomonas syringae indole-3-acetaldehyde dehydrogenase and Zea mays ALDH). Although published results showed consequential human IgE reactivity with ChALDH, no SPT reactivity was observed in this study. With only one of these three orphan allergens, ChMDH, eliciting SPT(+) reactions consistent with the protein being included in allergen databases, this underscores the complicated nature of how bioinformatics is used to assess the potential allergenicity of food proteins that could be newly added to human diets and, when needed, the subsequent clinical testing of that bioinformatic assessment.Trial registration number and date of registration AAC-2017-0467, approved as WIRB protocol #20172536 on 07DEC2017 by WIRB-Copernicus (OHRP/FDA Registration #: IRB00000533, organization #: IORG0000432).
Publisher
Springer Science and Business Media LLC
Subject
Agronomy and Crop Science,Genetics,Animal Science and Zoology,Biotechnology
Reference65 articles.
1. Abdelmoteleb M, Zhang C, Furey B, Kozubal M, Griffiths H, Champeaud M, Goodman RE (2021) Evaluating potential risks of food allergy of novel food sources based on comparison of proteins predicted from genomes and compared to www.AllergenOnline.org. Food Chem Toxicol 147:111888. https://doi.org/10.1016/j.fct.2020.111888
2. ACAAI (2021) Allergy facts. The American College of Allergy, Asthma & Immunology. https://acaai.org/allergies/allergies-101/facts-stats/. Accessed 02 Oct 2021
3. Achatz G, Oberkofler H, Lechenauer E, Simon B, Unger A, Kandler D, Ebner C, Prillinger H, Kraft D, Breitenbach M (1995) Molecular cloning of major and minor allergens of Alternaria alternata and Cladosporium herbarum. Mol Immunol 32:213–227. https://doi.org/10.1016/0161-5890(94)00108-d
4. Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66:213–221. https://doi.org/10.1107/s0907444909052925
5. AllergenOnline (2021) AllergenOnline. Home of the FARRP allergen protein database. http://allergenonline.com/. Accessed 02 Oct 2021
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献