Melanin-dependent tissue interactions induced by a 755-nm picosecond-domain laser: complementary visualization by optical imaging and histology

Author:

Jacobsen Kevin,Ortner Vinzent KevinORCID,Fredman Gabriella Louise,Christensen Rikke Louise,Dierickx Christine,Tanghetti Emil,Paasch Uwe,Haedersdal Merete

Abstract

AbstractFractional picosecond-domain lasers (PSL) induce optical breakdown, which correlates histologically to vacuolization in the epidermis and dermis. In this ex vivo porcine study, we sought to establish a framework for the investigation of laser-tissue interactions and their dependence on melanin density. Light- (melanin index: 24.5 [0–100]), medium- (58.7), and dark-pigmented (> 98) porcine skin samples were exposed to a 755-nm fractional PSL and examined with dermoscopy, line-field confocal optical coherence tomography (LC-OCT), conventional OCT, and subsequently biopsied for digitally stained ex vivo confocal microscopy (EVCM) and histology, using hematoxylin and eosin (HE) and Warthin-Starry (WS) melanin staining. Dermoscopy showed focal whitening in medium- and dark-pigmented skin. Similarly, LC-OCT and OCT visualized melanin-dependent differences in PSL-induced tissue alterations. Vacuoles were located superficially in the epidermis in dark-pigmented skin but at or below the dermal–epidermal junction in medium-pigmented skin; in light-pigmented skin, no vacuoles were observed. Histology confirmed the presence of vacuoles surrounded by areas void of WS staining and disrupted stratum corneum in darker skin. The combined use of optical imaging for multiplanar visualization and histological techniques for examination of all skin layers may mitigate the effect of common artifacts and attain a nuanced understanding of melanin-dependent laser-tissue interactions.

Funder

Cynosure

Danish Research Center for Skin Cancer

Royal Library, Copenhagen University Library

Publisher

Springer Science and Business Media LLC

Subject

Dermatology,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3