Phase Equilibria in the Ti-Rich Part of the Ti-Al-Nb System—Part I: Low-Temperature Phase Equilibria Between 700 and 900 °C

Author:

Distl B.ORCID,Hauschildt K.,Rashkova B.,Pyczak F.,Stein F.ORCID

Abstract

AbstractPrecise knowledge of the phase equilibria in the Ti-Al-Nb system between 700 and 900 °C is of crucial importance for the urgently needed improvement of TiAl-based turbine materials already in industrial use to achieve further energy savings. As a result of the occurrence of the two ternary intermetallic phases ωo(“Ti4NbAl3”) and O (“Ti2NbAl”), which form in the solid state just in the range of the application-relevant temperatures, the phase relations are very complex and not well studied. In the present investigation, isothermal sections of the Ti-rich part of the Ti-Al-Nb system at 700, 800, and 900 °C were determined by a systematic study of 15 ternary alloys, one solid-solid diffusion couple, and three liquid-solid diffusion couples. Using scanning electron microscopy, electron probe microanalysis (EPMA), x-ray diffraction (XRD), high-energy XRD (HEXRD), differential thermal analysis (DTA), and transmission electron microscopy (TEM) investigations, type and composition of phases as well as phase transitions were determined. With these results, the phase equilibria were established. A focus of the investigations is on the homogeneity ranges of the two ternary phases ωoand O, which both are stable up to temperatures above 900 °C. Based on the compositions measured for the ωophase and its crystal structure type, a new formula (Ti,Nb)2Al is suggested. The results also indicate that the phase field of the ωophase is split into two parts at 900 °C because of the growing phase field of the ordered (βTi,Nb)ophase.

Funder

Max-Planck-Institut für Eisenforschung GmbH

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Metals and Alloys,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3