GIS-based spatial approaches to refining urban catchment delineation that integrate stormwater network infrastructure

Author:

Si Qianyao,Brito Higor C.,Alves Priscila B. R.,Pavao-Zuckerman Mitchell A.,Rufino Iana A. A.,Hendricks Marccus D.

Abstract

AbstractRapid urbanization and escalating climate change impacts have heightened stormwater-related concerns (e.g., pluvial flooding) in cities. Understanding catchment dynamics and characteristics, including precise catchment mapping, is essential to accurate surface water monitoring and management. Traditionally, topography is the primary data set used to model surface water flow dynamics in undisturbed natural landscapes. However, urban systems also contain stormwater drainage infrastructure, which can alter catchment boundaries and runoff behavior. Acknowledging both natural and built environmental influences, this study introduces three GIS-based approaches to enhance urban catchment mapping: (1) Modifying DEM elevations at inlet locations; (2) Adjusting DEM elevations along pipeline paths; (3) Applying the QGRASS plug-in to systematically incorporate infrastructure data. Our evaluation using the geographical Friedman test (p > 0.05) and Dice Similarity Coefficient (DSC = 0.80) confirms the statistical and spatial consistency among the studying methods. Coupled with onsite flow direction validation, these results support the feasibility and reliability of integrating elements of nature and built infrastructure in urban catchment mapping. The refined mapping approaches explored in this study offer improved and more accurate and efficient urban drainage catchment zoning, beyond using elevation and topographic data alone. Likewise, these methods bolster predictive stormwater management at catchment scales, ultimately strengthening urban stormwater and flooding resilience.

Funder

University of Maryland Sustainability Fund 2019

National Science Foundation National Research Traineeship Program

CAPES

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3